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__Preface

TR BRI

Digital image processing is a rapidly evolving field with growing applications in
science and engineering. Image processing holds the possibility of developing the
ultimate machine that could perform the visual functions of all living beings. Many
theoretical as well as technological breakthroughs are required before we could buijld
such a machine. In the meantime, there is an abundance of image processing
applications that can serve mankind with the available and anticipated technology in
the near future.

This book addresses the fundamentals of the major topics of digital image
processing: representation, processing techniques, and communication. Attention
has been focused on mature topics with the hope that the level of discussion provided
would enable an engineer or a scientist to design image processing systems or conduct
research on advanced and newly emerging topics. Image representation includes
tasks ranging from acquisition, digitization, and display to mathematical characteriz-
ation of images for subsequent processing. Often, a proper representation is a
prerequisite to an efficient processing technique such as enhancement, filtering and
restoration, analysis, reconstruction from projections, and image communication.
Image processing problems and techniques (Chapter 1) invoke concepts from diverse
fields such as physical optics, digital signal processing, estimation theory, information
theory, visual perception, stochastic processes, artificial intelligence, computer
graphics, and so on. This book is intended to serve as a text for second and third
quarter (or semester) graduate students in electrical engineering and computer
science. It has evolved out of my class notes used for teaching introductory and
advanced courses on image processing at the University of California at Davis.

The introductory course (Image Processing I) covers Chapter 1, Chapter 2
(Sections 2.1 t02.8), much of Chapters 305, Chapter 7, and Sections 9.1t0 9.5. This
material is supplemented by laboratory instruction that includes computer experi-
ments. Students in this course are expected to have had prior exposure to one-
dimensional digital signal processing topics such as sampling theorem, Fourier trans-

Xix




form, linear systems, and some experience with matrix algebra. Typically, an entry
level graduate course in digital signal processing is sufficient. Chapter 2 of the text
includes much of the matheraxatical background that is needed in the rest of the book.

SEN———

A student who masters Chapter 2 should be able to handle most of the image "

processing problems discussed in the text and elsewhere in the image processing
literature.

The advanced course (Image Processing I) covers Sections 2.9, 2.13, and
selected topics from Chapters 6, 8, 9, 10, and 11. Both the courses are taught using
visual aids such as overhead transparencies and slides to maximize discussion time
and to minimize in-class writing time while maintaining a reasonable pace. In the
advanced course, the prerequisites include Image Processing I and entry level gradu-
ate coursework in linear systems and random signals.

Chapters 3 to 6 cover the topic of image representation. Chapter 3 is devoted to
low-level representation of visual information such as luminance, color, and spatial
and temporal properties of vision: Chapter 4 deals with image digitization, an
essential step for digital processing. In Chapter 5, images are represented as series
expansion of orthogonal arrays or basis images. In Chapter 6, images are considered
as random signals. .

Chapters 7 through 11 are devoted to image processing techniques based on
representations developed in the earlier chapters. Chapter 7 is devoted to image
enhancement techniques, a topic of considerable importance in the practice of image
processing. This is followed by a chapter on image restoration that deals with the

theory and algorithms for removing degradations in images. Chapter 9 is concerned |

with the end goal of image processing, that is, image analysis. A special image
restoration problem is image reconstruction from projections—a problem of im-

mense importance in medical imaging and nondestructive testing of objects- The |
theory and techniques of image reconstruction are covered in Chapter 10. Chapter 11

is devoted to image data compression—a topic of fundamental importance in image
communication and storage.

Each chapter concludes with a set of problems and annotated bibliography. The
problems either go into the details or provide the extensions of results presented in
the text. The problems marked with an asterisk (*) involve computer simulations.
The problem sets give readérs an opportunity to further their expertise on the
relevant topics in image processing. The annotated bibliography provides a quick
survey of the topics for the enthusiasts who wish to pursue the subject matter in
greater depth. . ‘

Supplerhentary Course Materials

Forthcoming with this text is an instructors manual that contains solutions to selected

problems from the text, a list of experimental laboratory projects, and course
syllabus design suggestions for various situations.

xx e : . Preface’
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1.1 DIGITAL IMAGE PROCESSING: PROBLEMS AND APPLICAT[?NS

: The term digital image processing generally refers to processing of a two-
’ . . dimensional picture by a digital computer. In a broader contexi, it implies digital
b processing of any two-dimensional data. A digital image is an array of real or
‘ complex numbers represented by a finite number of bits. Figure 1.1 shows a
computer laboratory (at the University of California, Davis) used for digital image
processing. An image given in the form of a transparency, slide, photograph, or
chart is first digitized and stored as a matrix of binary digits in computer memory.
This digitized image can then be processed and/or displayed on a high-resolution
television monitor. For display, the image is stored in a rapid-access buffer memory
which refreshes the monitor at 30 frames/s to produce a visibly continuous display.
Mini- or microcomputers are used to communicate and control ali the digitization,
storage, processing, and display operations via a computer network (such as the
~ -+ Ethernet). Program inputs to the computer are made through a terminal, and the
outputs are available on a terminal, television monitor, or a printer/plotter. -Fig-

‘ " - ure 1.2 shows the steps-in a typical image processing sequence..
' Digital image processing has a broad spectrum of applications, such as remote
- sensing via satellites and other spacecrafts, image transmission and storage for
S " business applications, medical processing, radar, sonar, and acoustic image process-

- . i ing, robotics, and automated Inspection of industrial parts.

Images acquired by satellites are useful in tracking of earth resources; geo-
graphical mapping; prediction of agricultural crops, urban growth, and weather;
flood and fire control; and many other environmental applications. Space image

_ , applications include recognition and analysis of objects contained in images ob-
° o " tained from deep space-probe missions. Image transmission and storage applica-

B
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resonance (NMR), and ulirasonic scanning. These images may be used for patient

Lirk to other

computers *j : ‘ : screening and monitoring or for detection of tumors or other disease in patients. :
: L : } Radar and sonar images are used for detection and recognition of various types of
' targets or in guidance and maneuvering of aircraft or missile systems. Figure 1.3
, — | }Z,fge;c:c::;r) e rr:ﬁ::mn;y . ,s.hows exax.nples of several d.if‘ferent types of ?mages. The.re are many other applica-
. tions ranging from robot vision for industrial automation to image synthesis for

cartoon making or fashion design. In other words, whenever a human or a machine
or any other entity receives data of two or more dimensions, an image is processed.

Although thert are many image processing applications and problems, in this
text we will consider the following basic classes of problems.

e b . 5

i . High
i . Large disk resolution e zahr?-::?a
i CRT

-4———» L:;r e digital }mage Color
SPU H >

buffer and processor monitors 3
] {network) +L - L~
. M i
Graphics . [ Printer p‘loner—l ‘ Tape drive t’:?':i?:;?y

workstation

{b) multispactral images: visual and infrared.

IR

Figure 1.1 A digital image processing system (Signal and Image Processing ¢
Laboratory, University of California, Davis).

Imaging S::inple Digital ./ Online . g e R
% system . " computer buffer i (d} optical cameraimages: Golden Gate and
quantize (disk} { downt SanF 8
| : wntown San Francisco. :
i

Output i
Object Observe - Digitize ~  Store * Process Refresh/ Y
store

Record

Figure 1.2 A typical digital image processing sequence.

tions occur in broadcast television, teleconferencing, transmission of facsimile im-

ages (printed documents and graphics) for office automation, communication over

computer networks, closed-circuit television based security monitoring systems,
j ' ~and in military communications. In medical applications one is concerned with -
; processing of chest X rays, cineangiograms, projection images of transaxial .
' tomography, and other medical images that occur in radiology, nuclear magnetic . Figure 1.3 Examples of digital images.

. (e} television images: girl, couple, Linda and Cronkite.

N
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1. Image representation and modeling'
2. Image enhancement ’
3. Image restoration

4. Image analysis
5
6

. Image reconstruction
. Image data compression

1.2 iMAGE REPRESENTATION AND MODELING

In image representation one is concerned with characterization of the quantity that
each picture-element (also called pixel or pel) represents. An image could represent
luminances of objects in a scene (such as pictures taken by ordinary camera), the
absorption characteristics of the body tissue (X-ray imaging), the radar cross section
of a target (radar imaging), the temperature profile of a region (infrared imaging),
or the gravitational field in an area (in geophysical imaging). In general, any two-

dimensional function that bears information can be considered an image. Image .

models give a logical or quantitative description of the properties of this function.
Figure 1.4 lists several image representation and modeling problems.

An important consideration in image representation is the fidelity or intelli-
gibility criteria for measuring the quality of an image or the performance o_f a
processing technique. Specification of such measures requires models of perception
of contrast, spatial frequencies, color, and so on, as discussed in Chapter 3. Knowl-
edge of a fidelity criterion helps in designing the imaging sensor, because it tells us
the variables that should be measured most accurately. }

The fundamental requirement of digital processing is that images be sampled
and quantized. The sampling rate (number of pixels per unit area) has to be large
enough to preserve the useful information in an image. It is determined by the
bandwidth of the image. For example, the bandwidth of raster scanned common

* television signal is about 4 MHz. From the sampling theorem, this requires a
- minimum sampling rate of 8 MHz. At 30 frames/s, this means each frame should
contain approximately 266,000 pixels. Thus for a 512-line raster, this means each

Image representation and modeling

I Local models I

*Sampling and reconstruction

*Image quantization

*Deterministic models

+Series expansions/unitary
transforms

*Statistical models

Global models

*Scene analysis/artificial
intelligence models

*Sequential and clustering
models

*lmage understanding models

Perception models

*Visual perception of contrast,
spatial frequencies, and color

+image fidelity models

*Temporal perception

*Scene perception

Figure 1.4 Image représentation and modeling.
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Figure 1.5 Image representation by orthogonal basis image series B,, ,.

image frame contains approximatel§ 512 x 512 pixels. Image quantization is the
analog to digital conversion of a sampled image to a finite number of gray levels.
Image sampling and quantization methods are discussed in Chapter 4. ’

" A classical method: of signal representation is by an orthogonal series ex-
pansion, such as the Fourier series. For images, analogous representation is possible
via two-dimensional orthogonal functions called basis images. For sampled images,
the basis images can be determined from unitary matrices called image transforms.
Any given image can be expressed as a weighted sum of the basis images (Fig. 1.5).
Several characteristics of images, such as their spatial frequency content, band-
width, power spectrum, and application in filter design, feature extraction, and so

' on, can be studied via such expansions. The theory and applications of image

transforms are discussed in Chapter 5. _ .

Statistical models describe an image as a member of an ensemble, often
characterized by its mean and covariance functions. This permits development of
algorithms that are useful for an entire class or an ensemble of images rather than
for a single image. Often the ensemble is assumed to be stationary so that the mean
and covariance functions can easily be estimated. Stationary models are useful in
data compression problems such as transform coding, restoration problems such as
Wiener filtering, and in other applications where global properties of the ensemble
are sufficient. A more effective use of these models in image processing is to con-
sider them to be spatially varying or piecewise spatially invariant.

To characterize short-term or local properties of the pixels, one alternative is
to characterize each pixel by a relationship with its neighborhood pixels. For
example, a linear system characterized by a (low-order) difference equation and

- forced by white noise or some other random field with known power spectrum

density is a useful approach for representing the ensemble. ‘Figure 1.6 shows three
types of stochastic'models where an image pixel is characterized in terms of its
neighboring pixels. If the image were scanned top to bottom and then left to right,

" the model of Fig. 1.6a would be called a causal model. This is because the pixel 4 is

characterized by pixels that lie in the “past.” Extending this idea, the model of Fig.
1.6b is a noncausal model because the neighbors of 4 lie in the past as well as the
“future” in both the directions. In Fig. 1.6¢, we have a semicausal model because

- the neighbors of A are in the past in the j-direction and are in the past as well as

future in the i-direction. : .

Such models are useful in developing algorithms that have different hardware
realizations. For example, causal models can realize recursive filters, which require
small memory while yielding an infinite impulse response (IIR). On the other hand,

Ses. 1.2 - Image Representation and Modeling . ' 5
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(a). Causal model, {b) Noncausal modef, {c) Semicausal model.

Figure 1.6 Three canonical forms of stochastic models.

noncausal models can be used to design fast transform-based finite impulse re-
sponse (FIR) filters. Semicausal models can yield two-dimensional algorithms;
which are recursive in one dimension and nonrecursive in the other. Some of these
stochastic models can be thought of as generalizations of one dimensional random

processes represented by autoregressive {AR) and autoregressive moving average

(ARMA) models. Details of these aspects are discussed in Chapter 6. .
In global modeling, an image is considered as a composition of several objects.
Verious objects in the scene are detected (for example, by segmentation tech-

niques), and the model gives the rules for defining the relationship among various

objects. Such representations fall under the category of image understanding
models, which are not a subject of study in this text.

1.3 IMAGE ENHANCEMENT

In image enhancement, the goal is to accentuate certain image features for subse-
quent analysis or for image display. Examples include contrast and edge enhance-
ment, pseudocoloring, noise filtering, sharpening, and magnifying. Image enhance-
ment is useful in feature extraction, image analysis, and visual information display.
The enhancement process itself does not increase the inherent information content
in the data. It simply emphasizes certain specified image characteristics. Enhance-
ment algorithms are generally interactive and application-dependent.

Image enhancement technigues, such as contrast stretching, map each grey
level into another gray level by a predetermined transformation. An example is the
histogram equalization method, where the input gray levels are mapped so that the
output gray level distribution is uniform. This has been found to be a powerful
method of enhancement of low contrast images (see Fig. 7.14). Other enhancement

techniques perform local neighborhood operations as in convolution, transform.

operations as in the discrete Fourier transform, and other operations as in pseudo-
coloring where a gray level image is mapped into a color image by assigning differ-
ent colors to different features. Examples and details of these techniques are
considered in Chapter 7. ‘ ’ ‘

6 S . ' : Introduction - Chap. 1

g(x,y)

Fla, B)
Noise
hix, y:ap)
4 Input —] Mmaging | Output 4
system )
x
0 * ) . o

Figure 1.7 Blurring due to an imaging system. Given the noisy and blurred im-
age the image restoration problen is to find an estimate of the input image f(x, y).

1.4 IMAGE RESTORATION

" Image restoration refers to removal or minimization of known degradations in an

image. This includes deblurring of images degraded by the limitations of a sensor or
its environment, noise filtering, and correction of geometric. distortion or non-
linearities due to sensors. Figure 1.7 shows a typical situation in image restoration.
The image of a point source is blurred and degraded due to noise by an imaging
system. If the imaging sytem is linear, the image of an object can be expressed as

s =] [ heriws@p)dedprae,y) @y

where n{x, y) is the additive noise function, f(e, B) is the object, g (x, y) is the image,
and A (x, y; o, B) is called the point spread function (PSF). A typical image restora-
tion problem is to find an estimate of f(«, B) given the PSF, the blurredimage, and
the statistical properties of the noise process.

' A fundamental result in filtering theory used commonly for image restoration
is called the Wiener filter. This filter gives the best linear mean square estimate of

- the object from the observations. It can be implemented in frequency domain via

the fast unitary transforms, in spatial domain by two-dimensional recursive tech-
niques similar to Kalman filtering, or by FIR nonrecursive filters (see Fig. 8.15). It
can also be implemented as a semirecursive filter that employs a unitary transform
in one of the dimensions and a recursive filter in the other.

Several other image restoration methods such as least squares, constrained
least squares, and spline interpolation methods can be shown to belong to the class
of Wiener filtering algorithms. Other methods such as maximum likelihood, max-
imum entropy, and maximum a posteriori are nonlinear techniques that require
iterative solutions. These and other algorithms useful in image restoration are
discussed in Chapter 8. -+

* 1.5 IMAGE ANALYSIS

Image analysis is concerned with making quantitative measurements from an image
to produce a description of it. In the simplest form, this task could be reading a label
on a grocery item, sorting different parts on an assembly line (Fig. 1.8), or

Sec. 1.5 image Analysis . 7
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Figure 1.8 Parts inspection and sorting on an assembly line.

measuring the size and orientation of blood cells in a medical image. More
advanced image analysis systems measure quantitative information and use it to
make a sophisticated decision, such as controlling the arm of a robot to move an
object after identifying it or navigating an aircraft with the aid of images acquired

along its trajectory.

Image analysis techniques require extractibn of certain features that aid in the
identification of the object. Segmentation techniques are used to isolate the desired"

object from the scene so that measurements can be made on it subsequently.
Quantitative measurements of object features allow classification and description of
the image. These techniques are considered in Chapter 9.

1.6 IMAGE RECONSTRUCTION FROM PROJECTIONS

- Image reconstruction from projections is a special class of image restoration prob-

lems where a two- (or higher) dimensional object is reconstructed from several
one-dimensional projections. Each projection is obtained by projecting a parallel
X ray (or other penetrating radiation) beam through the object (Fig. 1.9). Planar
projections are thus obtained by viewing the object from many different angles.
Reconstruction, algorithms derive an image of a thin axial slice of the object, giving
an inside view otherwise unobtainable without performing extensive surgery. Such
techniques are important in medical imaging (CT scanners), astronomy, radar imag-
ing, geological exploration, and nondestructive testing of assemblies. ‘
Mathematically, image reconstruction problems can be set up in the frame-
work of Radon transform theory. This theory leads to several useful reconstruction
algorithms, details of which are discussed in Chapter 10. .

Introduction Chap. 1
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Figure 1.9 Image reconstruction using X-ray CT scanners.

1.7 IMAGE DATA COMPRESSION

The amount of data associated with visual information is so large (see Table 1.1a)
that its storage would require enormous storage capacity. Although the capacities of
several storage media (Table 1.1b) are substantial, their access speeds are usually
inversely proportional to their capacity. Typical television images generate data
rates exceeding 10 million bytes per second. There are other image sources that
generate even higher data rates. Storage and/or transmission of such data require
large capacity and/or bandwidth, which could be very expensive. Image data com-
pression techniques are concerned with reduction of the number of bits required to
store or transmit images without any appreciable loss of information. Image trans-

TABLE 1.1a  Data Volumes of Image Sources
{in Millions of Bytes)

National archives 12.5x 10°
- 1h of color television 28 X 10°
- Encyclopeadia Britannica 12.5 x 10*
Book (200 pages of text characters) 1.3
One page viewed as an image o 13

TABLE 1.1b Storage Cabacities
{in Miilions of Bytes) v

Human brain : 125,000,000

Magnetic cartridge ‘ 250,000
Optical disc memory . 12,500
Magnetic disc 760
2400-ft magnetic tape 200
Floppy disc 1.25
" Solid-state memory modules 0.25
Sec. 1.7 Image Data Compression : : . 9
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mission applications are.in breadcast television; remote sensing via satellite, air-
craft, radar, or sonar; teleconferericing; computer communications; and facsimile .
transmission. Image stora ¢ is required. most commonly for educational and busi-
ness documents, medical images used in patient monitoring systems, and the like.
Because of their wide applications, data compression is of great importance in
digital image processing. Various image data compression techniques and examples
are discussed in Chapter 11.
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2.1 INTRODUCTION

In this chapter we define our notation and discuss some mathematical preliminaries
that w that will be useful throughout the book. Because imiaj 1magengeneraﬂy—ea%pufs'of
two-dimensional systems, mathematical concepts used in the study of such systems
are needed. We start by defining our notation and then review tlﬁ@ml_tﬁw
propemes of linear systems and the Fourier and Z-transforms. This is followed by a
review of several fundamental results from matrix theory that are important in

digital image processing theory. Two-dimensional random fields and some impor-,

tant concepts from probability and estimation theory are then reviewed. The
emph351s is on the final results and their applications in image processing. It is
assumed that the reader has encountered most of these basic concepts earlier. The
summary discussion provided here is intended to serve as an easy reference for
subsequent chapters. The problems at the end of the chapter provide an oppor-
tunity to revise these concepts through special cases and examples. :

2.2 NOTATION AND DEFINITIONS

- A one-dimensional continuous signal will be represented as a function of one

variable: f(x), u(x), s (?), and so on. One-dimensional sampled signals will be written
as single index sequences: iy , u(n), and the like.

A continuous image will be represented as a function of two independent
variables: u(x, y), v(x, ¥), f(x, y), and so forth. A sampled image will be represented
as a two- (or higher) dimensional sequence of real numbers: u,, ., v(m, n), u G Jj, k),
and so on. Unless stated 'otherwise, the symbols ;, j, k, [, m, n,..will be used to

Sec. 2.2
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specify integer indices of arrays and vectors. The symbol roman j will represent
V'—1. The complex conjugate of a complex variable such as z, will be denoted by

z*. Certain symbols will be redefined a

notation clear.

t appropriate places in the text to keep the

Table 2.1 lists several well-known one-dimensional functions that will be often
encountered. Their two-dimensional versions are functions of the_sepa

f&x y) = LAG)
For example, the two-dimensional delta functions are defined as
_Dirac:  8(x, y) = 3(x)3(y) (2.22)
Kronecker;  8(m, n) = 8(m)3(n) (2.20)

which satisfy the properties

ﬁfmf_:f(x'y}")a(x—x’,y —y")dx'dy’' =f(x,y)

im st acay =,

e

> x(m,n)= EME x(m', W —m',n=n') | 2.4)

m',n'=—x

e 23_‘, d(m,n)=1

mn=-—x

The definitions and properties of the functions rect(x, y), sinc(x, y), and comb(x, y)
can be defined in a similar manner. _

TABLE 2,1 Some Special Functions

Function ° Definition Function Definition
Diracdelta 3(x)=0,x #0 Rectangle  rect(x)= {(1): m § Z:
. [ _ 1, x>0
P—‘g) -.8 () de=1 Signum sgn (x) = [ (1)' x :8
Sifting - » %
poperty [ fG8G-x) ' =f@) | o
= ’ { Sinc sinc (x) =——
Scaling N
property d(ax)= 8(x) . ® ‘
lal Comb comb(x)= % 8(x —n)
Kronecker ne =
delta d(n)= {(1)’ n fg :
: T Triangle tri (x) = {1 ~ ke, l;l =1
Sifting = 0, |>1
property 2 f(m)8(n —m)=f(n) :
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2.3 LINEAR SYSTEMS AND SHIFT INVARIANCE

A large number of imaging 'systems can be modeled as two-dimensional linear
systems. Let x(sm, n) and y(m, n) represent the input and output sequerices,

respectively, of a two-dimensional system (Fig. 2.1), written as

y(m, n) =¥ [x(m, n)] (2.5)

This system is called lnear if and only if any linear combination of two inputs
x1(m, n) and x,(m, n) produces the same combination of their respective outputs
yi(m, n) and y,(m, n), i.e., for arbitrary constants 4, and a,

Hlax:(m, n) + ayxx(m, n)} = a, % [x,(m, n)]+ a, ¥ [xx(m, n)]
= ayyi(m, n) + a,y,(m,.n) (2.6)

This is called linear superposition. When the input is the two-dimensional
Kronecker delta function at location (m’,n’), the output at location (m,n) is
defined as

h(m,n;m’,n’)é‘;}t’[s(m—m',n—n')] 2.7

and is called the impulse response of the system. For an imaging system, it is the
image in the output plane due to an ideal point source at location (m’, n') in the
input plane. In our notation, the semicolon (;) is employed to distinguish the input
and output pairs of coordinates.

The impulse response is called the pointspread function (PSF) when the inputs
and outputs represent a positive quantity such as the intensity of light in imaging
systems. The term unpulse response is more general and-is allowed to take negative
as well as- complex values. The region of support of an impulse response is the
smallest closed region in the m, n plane outside which the impulse response is zero.
A system is said to be a finite impulse response (FIR) or - an infinite impulse response
(IIR) system if its impulse response has finite or infinite regions of support, re-
spectively. ' ' .

The output of any linear system can be obtained from its impulse response and
the input by applying the superposition rule of (2.6) to the representation of (2.4) as
follows: ‘

s

 (m, ) =5t (m, )]
- ?%[ZZx(m’,n')S(m—m’,n—n’)] ,

LA =2Zx(m’,\n')?€[5_(m—m",n-—n’)]
. $'.,"y(‘m,n)=‘22x(m’,n')h(m,n;m’,ti)ﬁl L (2.8)

© xim, n) -GCH y{m,n)

Figure 2.1 Asystem, .
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A’system is called spatially invariant or shift invariant if a translation of the input
causes a translation of the output. Following the > definition of 2. 7) if the impulse

occurs at the origin we wiil have
H[d(m, n)} = h(m, r;0,0)
Hence, it must be true for shift invariant systems that
h(m,nym', n') é%[ﬁ(m ~-m'n —-n")]
=h{m-m',n—n";0,0)
=> hA(m,nym',n') =h(m-m',n—n") 2.9)

i.e., the impulse response is a function of the two displacement variables only. This
means the shape of the impulse response does not change as the impulse moves
about the m, n plane. A system is called gpatially varying wher (2.9) does not hold.
Figure 2.2 shows examples of PSFs of imaging systems with separable or cxrcularly
symmetric impulse responses.

For shift invariant systems, the output becomes

y(m,n)= 22 h(m m' n-—n)x\m n') (2.10)

m'yn'

which is called the convelution of the input with the impuise response. Figure 2.3
shows a graphical interpretation of this operation. The impulse response array is
rotated about the origin by 180° and thea shifted by (m, n) and overlayed on the
array x(m’, n'). The sum of the product of the arrays {x(-,-)} and {#(-,-)} in the
overlapping regions gives the result at (m, n). We wil! use the symbol ® to denote
the convolution operation in both discrete and continuous cases, i.e.,

8@ =hw)@fwn [ [ he-xiy -y y e ay

y(m,n) h(m,n)@x(m,n)— ZE him—m' n—n)x(m n") (2.11)

m'n' =~

alb

Figure 2.2 Examples of PSFs € d
(a) Circularly symmetric PSF of average
atmospheric turbulence causing small

} / blur; (b) atmospheric turbulence PSF

- causing large blur; (c) separable PSF of a
diffraction limited system with square
aperature; (d) same as (¢) but with
smaller aperture.
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a :

1‘ Rotate by 180° and
shiftby {(m, )

h(m m',n—n')

(a) impulse response

{b) output at location (m, n} is the sum of product
of quantities in the area of overlap. :

Figure 2.3 Discrete convolution in two dimensions .

The convolution operation has several interesting properties, which are explored in
Problems 2.2 and 2.3. :

Example 2.1 (Discrete convolution) .
Consider the 2 X 2 and 3 X 2 arrays & (m, n) and x (m, n) shown next, where the boxed
element is at the origin. Also shown are the various steps for abtaining the convolution
of these two arrays. The result y(m, n) is a 4 X 3 array. In general, the convolution of
two arrays of sizes (M; X N} and (Mz X N, ) ylelds an array, of size [(M, + M, — 1) X
(Ni + N2~ 1)} (Problem 2.5). )

n n ‘)’l n
1 41
5 3 g m
| S IR T
@) x(m, n) (b) h(m, n) ©) k(~m, —n) )h(l m, —-n) /
n

. > s >

oo "

©y1,0)=-2+5=3 ' . (Hy(m, n) |

2.4 THE FOURIER TRANSFORM
Two-dimensional transforms such as the Fourier transform and the Z-transform are

of fundamental importance in digital image processing as will becoine evident in the
subsequent chapters. In one dimension, the Fourier transform of a complex
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function f(x) is defined as

LF@ Ss1r) [ fs) et~ i) @)
The inverse Founer transform of F &) is o '
/f(x) FF©)= | F(© expozng) a ) 2.13)

Two-d:mensxonal Fourier transform and its inverse are defmed analogously by
the linear transformations - S

et =[ [ A enl-pnes el @)
Fen = [ Fee) epliznea ye)dnde  @15)

Examples of some useful two-dimensional Fourier transforms are given in Table
2.2.

Properﬁés of the Fourier Transform

Table 2.3 gives a sumimary of the properties of the two-dimersional Founer trans-
form. Some of these properties are discussed next.

1. Spatial frequencies. 1f f(x, y) is luminance and x, y the spatvial coordinates,

respect {0 spatial distances. The units of & and &, are reciprocals of x and y, ‘

respectively. Sometimes the coordinates x, y are normalized by the viewing
distance of the image f(x, y). Then the units of &, , gz are cycles per degree (of
the viewing angle).

g

respect to one another. There is no loss of information if instead of preserving
the image, its Fourier transform is preserved. This fact has been utilized in an
image data compression technique called transform codmg

3. Separabzltty By definition, the Fouriér transform kernelis separable, so that 1t

TABLE 2.2 Two-Dimensional Fourier Transform Pairs

Foo »)

B (x y)
3(x £x0,y £ y0)
exp (£j2mxm) exp (j2myma)
exp[—m (x* +y?)]

F(&,8)

exp (£j2mx El) CXP (*j2nye&)
S Fm, & +11:)
exp [_‘ﬂ' E+8)]

rect (x, y) sinc (&, &) .
tri (x, ) sinc? (&, &)
‘comb (x, y) comb (&, &)
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Uniqueness. For continuous functions, f(x, y) and F(§,,§,) are unique with_

TABLE 2.3 Propemeq of Two-Dimensional Fourier Trans.orm

Fourier Transform F(£,, &)

Property Function f(x, y)

Rotation f(xx, =y) F(x&, *&)

Linearity afi(x, y) + a2 falx, y) a F (&, &) ta (&, &)
Conjugation ) Fr (-&, —&)
Separability H@f(y) F (&) B (&)

Scaling flax, by) F(& /IZ}) |§Z,/b)

Shifting flx 2x0,y £y0) exp[=j2w (xo &1 + Yo £2)1 F (&, &)
Modulation  expl*idm(mx +myf(6)) F(E&T 67w
Convolution g, »)=hx ) @f(x, y) G, &)=H(&, &) FE, &)
Multiplication g y)=h(x y)f(x y) G, &) =H(, &)@F(E, &)

Spatial correlation c¢(x, y) = A(x, y) *f(x, y) Cl, &) =H(~&, ~£)F(&, &)
1= [ s eyaay 1=] [ Fee s e

Inner product

can be written as a separable transformation in x and ¥, i.e.,
F&e)=] { | 765 exp- ;zwxa)dx] exp(~i2myta) dy

This means the two-dimensional transformation can be realized by a succes-
sion of one-dimensional transformations along each of the spatial coordinates.

4. Frequency response and eigenfunctions of shift invariant systems. An eigen-
function of a system is defined as an input function that is reproduced at.the

output with a possible change only in its amplitude. A fundamental property
of a linear shift invariant system is that its eigenfunctions are given by the-
complex exponential exp[j2m(§,x + &y)]. Thus in Fig. 2.4, for any fixed
(&1, &), the output of the linear shift invariant system would be :

g0 = [ G -xy -y explizae + oy ds’ dy

Performing the change of variables ¥ =x —x’, y =y —y' and smphfymg the
result, we get
f\-g(x, N=HE, &) explner +a0] N - (216)

- The function H(§,, &), which is the Fourier transform of the impulse re-

sponse, is also called the frequency response of the system. It represents the |

(complex) amplitude of the system response at spatial frequency (£, , & ).

F:gure 2 4 - Eigenfunctions of a linear Shlft invariant systerm,

¢ =exp {JZ"T(Elx +&y)L H=H{t, &) 2 A Fourier transform
of h (x,

The Fourier Transform ‘ ' 17
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5. Convolution rheorém. The Fourier transform of the convolution of two func-
tions is the product of their Fourier transforms, i.e.,

g ) =h N Ofa NS GE &) =H(E, EF(E,&)  (2.17)

This theorem suggests that the convolution of two functions'may be evaluated
by inverse Fourier transforming the product of their Fourier transforms. The
discrete version of this theorem yields a fast Fourier transform based con-
volution algorithm (see Chapter 5).

The converse of the convolution theorem is that the Fourier transform of
the product of two functions is the convolution of their Fourier transforms.

The result of convolution theorem can also be extended to the spatial

_correlation between two real functions £ (x, y) and f(x, y), which is defined as

e ) =k s )8 [ [ neyre+xty +yydedy @18)

A change of variables shows that c¢(x,y) is also the convolution

h(—x, —y)®f(x, y), which yields ‘
Clé,8)=H{(-&,-&)F(&,8) - (2.19)

Innq__g[gduct pre servation. Another important property of the Fourier trans-
form is that the inner product of two functions is equal to the inner product of
their Fourier transforms, i.e.,

6

[ [ remwwnay=[ [ Feeme edaa @)

Setting / = f, we obtain the well-known Parseval energy conservation formula
[ veoyracay =[ [ 1Fe.e)kae e a1y

. ie., the total energy in the function is the same as in its Fourier transform.
7. Hankel transform. The Fourier transform of a circularly symmetric function is
also circularly symmetric and is given by what is called the Hankel transform
(see Problem 2.10).

Fourier Transform of Sequences (Fourier Series)

For a one-dimensional sequence x(n), real or complex, its Fourier transform is
defined as the series

3

C X(w)= }3 x(n) exp( jnew), ~—w=e<w (2.22)

The inverse transform is grven by
x(n) == f X(w) exp(an) dw : (2.23)
18 Two-Dimensional Systems and Mathematical Preliminaries  Chap. 2

Note that X () is periodic with period 247 Hence it is sufficient to specify it over

one period.
The Fourier transform pair of a two- dimensional sequence x (m, n) is defined

as
X(wl,wz)_ 22 x(m,n) exp{—t(mm,—i—nwz)] =y, 0, < w(2.24)
. T :;\ ) '
x(m, n)=4—ﬂ_2 f f X (o1, 02) expli(mer + nwn)] dwrday] L @)

. et
Now X(«w; , w,) is periodic with period 2w in éach argument, i.e.,

Koy 227, 0,2 2%) = X (01 22, w2 ) = X (w0, 0y = 277) = X(wl,wz) (2.25)

Often, the sequence x (m, n) in the series in (2.24) is absolutely summable, i.e.,

53 km, )< C(2.26)

m,n=—wn

Analogous to the continuous case, H{w,,w;), the Fourier transform of the shift
nvariant impulse response is called frequency response. The Fourier transform of
sequences has many properties similar to the Fourier transform of contmuous '
functions. These are summarized in Table 2.4.

TABLE 2.4 Properties and Examples of Fourier Transform of Two-Dimensional Sequences

" Spatial correlation

" Inner vrodust

c(m, n)=h{m, n) % x(m, n)

SI= 23 x(m, n)y*(m, n)

m o=

Property Sequence Transform
x(mr ?l), ,V(m, l’l), h(m: ’l), e X(wl, wz), Y(wl; (!)2), H(w,, (.02), LR

Linearity arx1(m, n) + a:x,(m, n) X (w1, @3) + @2 Xz (1, wz)
Conjugation x* (m, n) X* (—o1, —w)
Separability x, (m) x2 (n) X1 (01) Xz (0z)

Shifting x(m £mg, n % np) _ exp[£j(mo wy + now:)] X (w1, w,)

- Modulation exp[*j(wam + wen)]x (m, n) X (w1 F wor, w2 F 002)

Convolution ; y(m, n) =h(m, n)®x(m, n) Y (an, 02) = H(w;, w2) X (o;, @)
Multiplication h(m, n)x(m, n) <é§ H(01, 0:) @ X (w1, w3)

C(wlr ")2) = H(-wh —(ﬂz) X((ol, (;)2)

I= éﬁf'ﬂf_"X(wh @2) Y* (001, 03) dw, dar,

Energy conservation %= 22 !x(m ) ¢ =Z% f [ 1X (w1, w2)] dwrdw,
22 exp [J(m wo1 + Niwgy)] 47 8 (w1 — wo1, Wy — wgz)
8(m, n) ﬁf_ﬂf_ﬂexp[—j(w;m +wrn)] duwr dw,

Sec.2.4 - The Fourier Transform
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2.5 THE Z-TRANSFORM OR LAURENT SERIES

A useful generalization of the Fourisr series is the Z —transfdrm, which for a
two-dimensional complex sequence x (i, n) is defined as ‘

X(z;,2,) = sz x(m, n)zi™ 23" -

mn=—w

2

,' ‘W" //" : P
where z,, z, are complex variables. The set of values of 21, z; for which this series
converges uniformly is called the region of convergencé. The Z-transform of the

impulse response of a linear shift invariant discrete system is called its transfer
_function. Applying the convolution theorem for Z-transforms (Table 2.5) we can
transform (2.10) as
Y(z,2) = H(z, 2)X(2,2) |
Y{z1,2,) |
X (:zl » 22 ) J

> | Hm)=

£

i.e., the transfer function is also the ratio of the Z-transforms of the output and the :

input sequences. The inverse Z-transform is given by the double contour integral
N T T ‘
‘x(m, n)= (J_Z:r—r? 36§X(zl ,z; Vzr~lz8tdz, dz, (2.28)

where the contours of integration are counterclockwise and lie in the region of
convergence. When the region of convergence includes the unit circles lz;]=

1,]z2| =1, then evaluation of X(z,,2,) at z; = exp(joy ), 2, = exp(jo ) yields the

Fourier transform of x(m, n). Sometimes X (z,,2,) is available as a finite series

(such as the transfer function of FIR filters). Then x(m, n) can be obtained by

inspection as the coefficient of the term z;™ z;".

§

ABLE 2.5 Properties of the Two-Dimensional Z-Transform

Property Sequence Z-Transform
x(m' n)’ y(mn n): h(m' n)s ot X(Zh 22)7 Y(Z], 22): H(Zh 22), e
Rotatiori x(—m, —n) Xz, z2Y)
Linearity aixi(m, n) + %, (m, n) a X1 (z1, 22) + a2 Xz (21, 22)
Conjugation X*(m, n) X*(zf, 23)
Separability x1(m)x,(n) X1 (21) Xa(22) |
Shifting x(m £ mg, n % ny) 2™ 2, X (24, 22) '
Modulation a" b"x(m, n) X (%, % )
Convolution R(m, n)®x(m, n) H(z, 22) X (21, 3)
iolicati _1_)5£§ (z_z_) o gy dEidzt

Multiplication x(m, n)y(m, n) (271_]. X Iz Y(zl, z3) P

CiC2

20 Two-Dimensional Systems and Mathematical Preliminaries  Chap. 2

Causality and Stability

A one-dimensional shift invariant system is called causal if its output at any'time is
not affected by future inputs. This means its impulse response A(n) =0 for n <0
and its transfer function must have a one-sided Laurent series, i.e.,

: i

é/ H(z) = goh(n)z-"

{
f ]
Pl drned

. (2.29)

Extending this definition, any sequence x(n) is called causal if x(n)=0,n <0;
anticausal if x (n) = 0,n = 0, and noncausal if it is neither causal nor anticausal.

A system is called stable if its output remains uniformly bounded for any
bounded input. For linear shift invariant systems, this condition requires that the
impulse response should be absolutely summable (prove it!), {.\e.,

. ir ]
2 |r(m)| < L (2.30)
This means H (z) cannot have any poles on the unit circle |z| = 1. If this system is to
be causal and stable, then the convergence of (2.29) at |z| = 1 implies the series must
converge for all |z| = 1, i.e., the poles of H(z) must lie inside the unit circle.
In two dimensions, a linear shift invariant system is stable when

IS5 1h(m, ) </ _ (231

£

which implies the region of convergence of H(z;, z;) must include the unit circles,
e, |z|=1,|n|=1. '

2.6 OPTICAL AND MODULATION TRANSFER FUNCTIONS

For a spatjally invariant imaging system, its gp_t_i;zaLtmzzsfez:fuzmtiqu_(OTF) is de-
fined as its normalized frequency response, ie., ‘

. . H (§1 ’ gZ) ‘ ’ 8
) OTF =% &%) | | (2.32)
The modulation transfer function (MTF) is defined as the magnitude of the OTF,

ie., ‘

MTF=]OTF[=%2)%’ ' @)

Similar relations are valid for discrete systems. Figure 2.5 shows the MTFs of
systems whose PSFs are displayed in Fig. 2.2. In practice, it is often the MTE that is
measurable. The phase of the frequency response is estimated from physical consid-
erations. For many optical systems, the OTF itself is positive.

Sec. 2.6 Optical and Modulation Transfer Functions 21
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Figure 2.5 MTFs of systems whose

L 4 PSFsare displayed in Figure 2.2.

Example 2.2
The xmpulse response of an imaging system is ngen as h(x, y) =2 sin¥n(x —xo)}
[m(x = x0)? sin’[w(y — yo)Vm(y — yo)]*. Then its frequency response is H(£, , &) =
2tri&, &) exp[—j2m (xo& + yo&z)}, and OTF =tri(£:, &) exp{—~i2w (xo &1 + yo 2],
MTF=tri (&, ). ,

2.7 MATRIX THEGRY RESULTS

" Vectors and Matrices

Often one- and two-dimensional sequences will be represented by vectors and
matrices, respectively. A column vector u containing N elements is dénoted as

u(1)
u@ | -
wlumy=| - S (234)
u(N)
The nth element of the vector u is denoted by u(n), u,, or [u],. Unless spécified

otherwise, all vectors will be column vectors. A column vector of size N is also
called an N X 1 vector. Likewise, a row vector of size N is called a 1 X N vector.

22 - Two-Dimensional Systems and Mathematical Preliminaries = Chap. 2
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A matrix A of size M XN haé M rows and N columns and is defined as
a(l,1) a(l,2) ---a(l, N)
a2, 1)
Alfa(m =]’ R 2.35)

;;(M, 1) ;(M, 2):”a(M, N

The element in the mth row and ath column of matrix A is written as [A]n A
a(m, n) £ a,, ,. The nth column of A is denoted by a, , whose mth element is written
as a,(m) = a(m, n). When the starting index of a matrix is not (1, 1), it will be so

indicated. For example,
A={a(m,n) 0<m,n=N-1}

represents an N X N matrix with starting index (0, 0). Common definitions from

matrix theory are summarized in Table 2.6.
In two dimensions it is often useful to visualize an image as a matrix. The
matrix representation is simply a 90° clockwise rotation of the conventional

two-dimensional Cartesian coordinate representation:

S P

-x(m, n) =

o -
N O e

Row and Column Ordering

Sometimes it is necessary to write a matrix in the form of a vector, for instance,
when storing an image on a disk or a tape. Let

= B.6{x(m, n)}

be a one-to-one ordering of the elements of the array {x (m, n)} into the vector .=.

- For an M % N matrix, a mapping used often is called the lexicographic or dictionary

ordering. This is a row-ordered vector and is defined as

o= [x (1, Dx(1,2) ... x(1,N)x(2,1)...x(2,N).. x(M 1), f’x(M, NI~ ‘.
8. 6,4x(m, n)} : o ‘ (2.36a)

Thus =7 is the row vector obtained by stacking each row to the right of the previous
row of X. Another useful mapping is the column by column stackmg, which gives a
column-ordered vector as

T=[x(1,1)x(2,1)...x(M, Dx(1,2)...x(M, 2)...x(1,M). . .x(M, N)]T
Sec. 2.7 Matrix Theory Results - ‘ 23

AR




TABLE 2.6 Matrix Theory Definitions

Item Definition Comments
Matrix A={a(m, n)} m =row -index, # =column
o index
Transpose AT={a(n, m)} Rows and columns are

Complex conjugate
Conjugate transpose

Identity matrix

Null matrix

Matrix addition

Scalar multiplication

Matrix multiplication

Commuting matrices

Vector inner product
Vector outer product

Symmetric
Hermitian

Determinant
Rank [A]

Inverse, A~!
Singular

Trace

Eigenvalues, \¢
Eigenvectors, ¢«

ABCD lemma

*={a*(m, n)}
A*T={a*(n, m)}

I={8(m —n)}

0 = {0}

A+B= {a(m, r) + b(m, n)}

oA ={aa (ni, n)}

c(m, n) A > a(m, k) bk, n)

k=1

AB=BA :
&0 8x Ty =T x* () y(n)

xy"=fx(m)y (m)} ;

A= AT
A"=AtT
A

Number of linearly indepen-
dent rows or columns.

ATTA=AAT =1
A" does not exist

Te[Al= 2 a(n, n)
Al roots [A ~ AT =0

All'solutions A & = A (e,
i #0

(A —BCD)™ =

AT +AT'B(C'~DA™'B)' DA™

interchanged.

A square matrix with
unity along its diagonal.
All elements are zero.

A, B have same
dimensions.

CCAAB AiSMXK Bis

K XN, Cis M XN.
AB # BA.
Not true in general.

Scalar quantity. If zero,
x and y are called
orthogonal.
xisMX1,yisNX1,
outerproduct is M X N;
is a rank 1 matrix.

A real symmetric matrix -

" is Hermitian. All
eigenvalues are real.

For square matrices only.

For square matrices only.
[Al=0

Sum of the diagonal
elements.

A, C are nonsingular.
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9 "'52 = . B .
GO SR Y
X; R ~ "‘ — 1 ,“_/\._..__
% o & Vo B R
=" |264x(m, n)} (2.36b)

XN,
where x, is the nth column of X.
Transposition and Conjugation Rules
1 A*T=[AT]*
2. [AB]"=BTAT
3. [AT=][AT]?
. [AB]* = A*B*

Note that the conjugate transpose is denoted by A*”. In matrix theory literature, a
simplified notation A* is often used to denote the conjugate transpose of A. In the

theory of image transforms (Chapter 5), we will have to distinguish between A, A*,
A" and A*7 and hence the need for the notation.

o

Toeplitz and Circulant Matrices

A Toeplitz matrix T is a matrix that has constant elements along the main diagonal
and the subdiagonals. This means the elements ¢(m, n) depend only on the differ-
ence m —n, i.e., t(m, n) =t,_,. Thus an N x N Toeplitz matrix is of the form

h 1 sl

4ot Iy tn+2 . N

53 . .
T=|- . ; (2.37)

. ty :

tN—l" b [2 tl tg 5 .

and is completely defined by the (2N —1) elements {#,—-N +1<k=N -1}
Toeplitz matrices describe the input-output transformations of one-dimensional
linear shift invariant systems (see Example 2.3) and correlation matrices of sta-

tionary sequences. -
A matrix Cis called circulant if ¢ach of its rows (or columns) is a circular shift

of the previous row (or column), i.e.,
' ' FCD € G enoy

Cn-1 € € CN-2
C= (2.38)
55} C1
L.C1 Co
25
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‘Note that C is also Toeplitz and

c(m,ny=c((m —r) modulo N) (2.39)

erculan. matrices describe the input-output behavior of one-dimensional
linear periodic systems (see Example 2.4) and correlation matrices of periodic
sequences.
Example 2.3 (Linear convolution as a Toepiitz matrix operation)

The output of a shift invariant system with impulse response h(n) =n, ~1 =n =1, and
with input x (r), which is zero outside 0 < n = 4, is given by the convolution

V)= k(W) @x(r) = 3 hin —K)x(k)

Note that y (n) will be zero outside the interval —1=<n =5. In vector notation, this can
be writien as a 7 x 5 Toeplitz mat-ix operating on a.5 X 1 vector, namely, -

y-D{ |-1 0 0 0 0
¥(0) 0 -1. 0 o 0 (x(O)
y(1) 1.0 -1--¢ oflzx@®
y2 |={ 6 1 0 -1 oj|x®
y(3) 0 0 1 0 -1{x(3)
y(4) 0.0 0 1 o0}lx@
& J Lo o o0 .0 1

Example 2.4 (Circular convolution as a circulant matrix operation)

If two convolving sequences are periodic, then their convoluticn is also permdxc and
can be represented as :

y(n)=N§3]h(n —k)x(k), O=n<N-1

where Ii( —n)=h(N —n) and Nis the penod For example Iet N =4and h(n) n+ 3 .

(modulo 4). In vector notation this gives P L JLEN A :
y(0) 32 1 0fx(0)
y(DI_10 3 2 1}|x(1) “
y(2) 103 21x(2)
21 0 3]{x(3

y{3

Thus the input-to-output transformation of a circular convolution is described by a
circulant matrix. . .
A

Orthogonal and Unitary Matrices

An grthogonal matrix is such that its inverse is equal to its transpose, ie., Ais

orthogonal if
A-—l - AT
or ‘ _ o
’ ATA=AAT=1 (2.40)
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A matrix is called gnitarz if its inverse is equal toits conjugate transpose, i.e.,

- A-l — A*T
or :
AA*T=ATA =] S (2.41)

A _real orthogenal matrix is also unitary, but a unitary matrix need not be
orthogonal. The preceding definitions imply that the columns (or rows) of an N X N
unitary matrix are orthogonal and form a complete set of basis vectors in an
N-dimensional vector space.

Example 2.5
Consider the matrices

1[1 1] [\/ij] 1[1;‘}
A= R Ap=1] ' s As=—=1

V2l -1 Tl V2 *Tvzljo1

Itis easy to check that A, is orthogonal and unitary. A, is not unitary. A is umtafy with
orthogonal rows.

Positive Definiteness and Quadratic Forms

An N X N Hermitian matrix A is called positive defini
quadratic form

T positive semidefinite if the

Q8x*TAx, Vx#0 (2.42)

is positive (>>0) or nonnegative (=0), respectively. Similarly, A is negative definite or
negative semidefinite if Q <0or Q <0, respectxvely A matrix that does not satisfy
any of the above is indefinite.

If A is a symmetric positive (nonnegatxve) definite matrix, then all its eigen-
values {\;} are’ positive (nonnegative) and the determinant of A satisfies the in- -

equality
N

1Al =,fl Ne= [ a(k, k) ey

Diagonal Forms

For any Hermitian matrix R there exists a unitary matrix & such h that
@ TRO=A  (2.44)

.where Aisa dxaggnax matrix containing the elgenvalues of R. An altemate form of
the above equation is

R® =dA ‘ : (2.45)

which is the set of eigegyalue equations

where {\¢} and {d, } are the eigenvalues and eigenvectors, respectively, of R. For
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Hermitian matrices, the eigenvectors corresponding to distinct elgenvalues are

/th_hgggglil For repeated cigenvalues, their eigenvectors form a subspace that can

‘be orthogonalized to yield a complete set of orthogonal eigenvectors. Normaliza-

: tion of these eigenvectors yields an orthonormal set, i.e., the unitary matrix @,
- / whose columns are these eigenvectors. The matrix @ is also called the eigenmatrix

of R.

2.8 BLOCK MATRICES AND KRONECKER PRODUCTS

In image processing, the analysis of many problems can be simplifie/d substantially
by working with block matrices and the so-called Kronecker products. For example,
the two-dimensional convolution can be expressed by simple block matrix oper-
ations.

Block Matrices

Any matrix s§ whose elements are matrices themselves is called a block matrix ; for
example, -

1

Ay A A,
Ay Agn Ay,

a=\ ] e
Am,l Am,Z"'Am,n

is a block matrix where {A;;} are p X g matrices. The matrix & is called an m X n
block matrix of basic dimension p X g. If A;; are square matrices (say, p X p), then
we also call & to be an m X n block matrix of basic dimension p.

If the block structure is Toeplitz, (A;; = A;-;) or circulant (A;; = A~ jymodulon)s
m = n) then o is called block Toeplitz or block circulant, respectively. Additionally,
if each block itself is Toeplitz (or circulant), then & is called doubly block Toeplitz
{or doubly block circulant). Finally, if {A;} are Toeplitz (or circulant) but (A;;#
A;_))then st is called a Toeplitz block (or circulant block) matrix. Note that a doubly
Toeplitz (or circulant) matrix need not be fully Toeplitz (or circulant), i.e., the
scaler elements of & need not be constants along the subdiagonals.

Example 2.6 ) .
Consider the two-dimensional convolution R

2 1
> 2 hm—m',n—n%(m’,n),
m'=0n' =0
where the x (m, n) and s (m, n) are defined in Example 2.1. We will examine the block
structure of the matrices when the input and output arrays are mapped into column-
ordered vectors. Let x, and y, be the column vectors. Then

y(m,n)=

1
Vo= 2 HoowXe, H.,={h(m-m'n), 0=m=3, O0sm'=2}
n'=0 ' .
28 ~ Two-Dimensional Systéms and Mathematical Preliminaries =~ Chap. 2
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where

AR

X=|51, =14, Hy= T 0
3 1 0 -1 1
" 0 0 -1
10 0]

|11t 10 N

H, = 01 10 H.,=0, =0

bO 0 lJ,

Defining 4 and . as column-ordered vectors, we get

Yo Ho 0
& l’le = (Hl Ho} [Xu] é%l‘
Y2 ¢ H X
where % is a doubly Toeplitz 3 X 2 block matrix of basic dimensions 4 x 3. However,
the matrix % as a whole is not Toeplitz because [H}, » % [¥].. - » (show it!). Hence the
one-dimensional system g4 = ¥ v is linear but not spatially invariant, even though the
original two-dimensional system is. Alternatively, 4 = % . does not represent a one-

dimensional convolution operation although it does represent a two-dimensional
convolution.

Example 2.7

Block circulant matrices arise when the convolving arrays are periodic. For example,
let

2 Z h(m—m',n—n"x(m’, n",

where /(m, n) is doubly periodic with periods (3,4), i.e., h(m, n) h(im +3,n + 4),
Vm, n. The array k& (m, n) over one array period is shown next:

y(m,n)= 0=m=2, 0=n=3

" A
3[1T0]1
. 27|70 k(m, n)
113|571
S - n=0|4{8{7F . m
m=0 1 2

In'terms of column vectors of x (m, n) and y (m, n), we can write
3

¥o= 2 HoinXe,

n'=g

O=n=3

where H, is a periodic sequence of 3 X 3 circulant matrices with period 4, given by

4 3 8 315 20 2] 110
Ho=8 4 3|, H={5 3 1|, H,=[2 2 0|, H=]0-1 1
384 153 02 2] 101
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Written as a column-ordered vector equation, the outpur becomes

[ v [ B oH H;] %o

_yl _tH Hy H; H
Yyl T8 B H OH
NE) H: H, H HOJ X3

where H-,, = Hy_ .. Now % is a doubly circulant, 4 % 4 block matrix of basic dimension
3x3.

Kronecker Products

If A and B are M, X M, and Nj X N, matrices, respectively, then their Kronecker
product is defined as

. a(l, DB - - - a(l, MZ)B
A®B2{a(m, n)B} = : . (2.48)
V a(A%l, 1)B"--a(Mi., M,)B
This is an M X M, block matrix of basic dimension N; X N, MAOB_%

B® A. Kronecker products are useful in generating high-order matrices from
low-order matrices, for example, the fast Hadamard transforms that will be studied

in Chapter 5. Several preperties of Kronecker products are hsted in Taolc 27.A

particularly useful result is the identity

(A®B)(C®D)=(ACQ)®(BD) (2.49)

It expresses the matrix multiplication of two Kronecker products as a I\ronecker :

product of two matrices. For N X N matrices, it will take O(N“) + O(N*) oper-

TABLE 2.7 Properties of Kronecker Products

.(A+B)®C=A®C +BEC /.éf

- (ARBIR®C=ARBRC) -

Ca(AR®BY=(2A)®B =A® (mB), where ais scalur

. (A®B)=A"®B"

(A®B)'=A"'@B™

- (A®B)(COD) = (AC)®(BD)

A®B=(AQDI®B) _
. I1 (Ax®By) = ( I Ak> ( 11 Bk), where A and B, are square matrices

k=1

9. det(A®B)=1{detA)" (det B)", where Aism X mandBisn xn
10. Tr(A®B) =[Tr (A)}[Tr (B)]
11. If 7(A) denotes the rank of a matrix A, then 7(A ®B) =r(A)r(B).
12. If A and B are unitary, then A ® B is also unitary. ., 4

13. I C = AQ®B, C& = ve &, Axi = NiX,, By, = by¥j,
thengk-—x,®y,,yk—)\ rplsi=m lsjsn lsk=mn

5
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ations to compute the left side, whereas only O(N*) operations are required to
compute the right side. This principle is useful in developing fast aigonthms for
multiplying matrices that can be expressed as Kronecker products.

Example 2.8
Let
o1 12
a=[; —1]’ B‘[a 4}
Then
12 1 2 1 1.2 2
134 3 4 1 -1 2 =2
ABB=1] 5 |3 o) B®A=3 5
34 -3 —4 3 -3 4 —4
Note the two products are not equal.
Separable Operations
Consider the transformation (on an N X M image U)
V4 Aup”
or
v(k,1)=22a(k, myu(m, n)b(l, n) (2.50)

This defines a class of separable operations, where A operates on the columns of U
and B operates on the rows of the result. If v, and u,, denote the kth and mth row
vectors of V and U, respectxvely, then the preceding series becomes

vi= 2 a(k, m)[Bul]= Z [A® B ul

where [A @ Bl is the (k, m)th block of A®B. Thus if U and V are row-ordered
into vectors « and o, respectively, then
V=AUB” 3 »=(A®B)w

i.e., the separable transformation of (2.50) maps into a Kronecker product oper-
atmg on a vector. i

Definitions

A complex discrete ranidom signal or a discrete random process is a sequence of
random variables u (n). For complex random sequences, we defing

Mean 2 ju(n) & u(n) = Efu(n)] o (2.51)
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Variance 2 o2(n) = ¢ ¥(n) = Ellu(n) = u(n)f} (2.52)
Covariance = Cov{u(n), u(n "] & rdmny2r(nn’) ' '
= E{[u(n) — w(m)l[w* (5 ) — w*(n )]} : (2.53)
Cross covarién;:e é Cov[it (n),v(n")] é?,:(n,n ’)7‘*“ )
=E{[u(n) = m.(m)]lv* (n") = p} (1} (2.54)
Autocorrelation & a.(n,n’) 4, (n,n') = Elu(mu*(n"]
=r(n,n)+umu(n’) (2.55)

Cross-correlation = au(n, 1’y = Elu(nyv*(n ’)] =ra{mn)+pm)pr (@) (2.56)

The symbol E denotes the mathematical expectation operator. Whenever there is
no confusion, we will drop the subscript « from the various functions. For an N X 1
Vector u, its mean, covariance, and other properties are defined as

Efu]=p={u(n)} isanN x.1vector, (2.57)
Cov[u] 4 E(u—p)(u* - p,*)Té R,AR= {r(n,n")} isan N X N matrix (2.58)
Cov{u, v} Ap (u—p ) — )T A R., ={r.(n, n"} isan N X N matrix :(2.59)
Now p and R represent the mean vector and the covariance matrix, respectivc;ly, of

the vector u.

Gaussian or Normal Distribution

-The probability density function of a random variable u is denoted by p.(«). Fora

Gaussian random variable

Dul2) AL exp{
V2wa? 2
where . and o are its mean variance and « denotes the value the random variable
takes. For p =0 and o? = 1, this is called the standard normal distribution.

Gaussian Random Processes

A sequence, bossjbly infinite, is called a Gaussian (or normal) random process if the
joint probability density of any finite sub-sequence is a Gaussian distribution. For
example, for a Gaussian sequence {u(n), 1 =5 = N} the joint density would be

Pu(w) =puler, @z, o, ) =[(2m)"* [RI] exp {~ s (e = )* "R (w ~ )} (2.61)

where R is the covariance matrix of u and is assumed to be nonsingular.

Stationary Processes

A random sequence u(n) is said to be strict-sense stationary if the joint density of
any partial sequénce {u(/), 1=/ =<k} is the same as that of the shifted sequence
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{u +m),1=I=k}, for any integer m and any length k. The sequence u(n) is
called wide-sense stationary if
Elu(n)] = p = constant
Elu(nyu*(n)]=r(n —n’) : (2.62)

This implies 7(n, n') =r(n —n’), i.¢., the covariance matrix of {u(n)} is Toeplitz.

Unless stated otherwise, we will imply wide-sense stationarity whenever we
call a random process stationary. Since a Gaussian process is completely specified
by the mean and covariance functions, for such a process wide-sense stationarity is
the same as strict-sense stationarity. In general, although strict-sense stationarity
implies stationarity in the wide sense, the converse is not true.

We will denote the covariance function of a stationary process u(n) by r(n),
the implication being

r(n) = Covlu(n), u(0)] = Covju(n’ + n), u{n’], Vn', Vn (2.63)

Using the definitions of covariance and autocorrelation functions, it can be
shown that the arrays r(n,n") and a(n,n') are conjugate symmetric and non-
negative definite, i.e., ' :

Symmetry: r(n,n)=r*(n’, n), Va, n' (2.64)
‘ Nonnegativity: 2 > x @Wr(n,n)x*(ny =0, x(n)+0,Vn (2.65)

This means the covariance and autocorrelation matrices are Hermitian and
nonnegative definite.

Markov Processes

A random sequence u(z) is called Markov-p, or pth-order Markov, if the condi-_
_tional probability of i () given the entire past is equal to the conditional probability
of u(n) given only u(n ~1),...,u(n ~p), ie., '

Problu(n)lu(n - 1),u(n -2),...1= ' :
} Problu(m)lu(n - 1),...,u(n WAL (2.66a)
~ A Markov-1 sequence is simply called Markov. A Markov-p scalar sequence can
" also be expressed as a (p x 1) Markov-1 vector sequence. Another interpretation of
a pth-order Markov sequence is that if the “present,” {u(j )l n—p=j=n-1} is
known, then the “past,” {u(j),j <n ~p}, and the “future,” {u(j),j =n}, are
independent. This definition is useful in -defining Markov random fields in two
dimensions (see Chapter 6). For Gaussian Markov-p sequences it is sufficient that

- the conditional expectations satisfy the relation

CEu@mu(n - 1),u(n ~2),.. d=Elu@iun -1),...,u(n-p)l,” An (2.66b)
o Example 2.9 (Covariance matrix of stationary sequences) ’ '

The covariance function of a first-order stationary Markov sequence u(n) is given as

‘ rmy=g",  lpl<i,va (2.67)

Sec.28  Random Signals ) 33




il s S s e R e T A R B o i i o i o

This is often used as the covariance model of a scan line of monochrome images.
For an N X 1 vectoru = {u (n), l=n= < N}, its covariance matrix is {r(m — n)}, i.e.,

p p N 1
\\ (2.68)

p 1

which is Toeplitz. In fact the covariance aj ati i stationa;
sequence are Toeplitz. Conversely, any sequence, finite or infinite, can be called
stationary if its covariance and autocorrelation matrices are Toeplitz,

Orthogonality and Independence \

Two random variables x and y are called independent if and only if their joint.
probability density function is a product of their marginal densities, i.e.,

| peste, ) = pIps) | @69)

Two random sequences x (n) and y (n) are called independent if and only if for every
n and n’, the random variables x(n) and y(n') are independent.
The random variables x and y are said to be orthogengl if

Efxy*]=0 (2.70)
and are called uncorrelated it ‘
E[xy*]=(E[x](E[*])
or '
E[(x — m)(y = ,)*1=0 ’ @.7)

Thus zero mean uncorrelated random variables are also orthogonal. ‘Gaussian ran-:
dom variables wmch are uncorrelated are also independent.

;The Karhunen-Loéve (KL} Transform

Let{x(n),1sn= N } be a complex random sequence “whose autocorrelation matrix
isR. Let @ be an N X N uniiary matrix, which reduces R to its dlagonal form A [see
(2.44)]. The transformed vector o ‘
|y=o"x]} : (2.72)
is called the Karhunen-Lo&ve (KL) transform of x. It satisfies the property
yy*T] (I)*T{E *1]}(1) ‘I)*TR(I) A ‘
> Ey®yOl=nek -1 | @7)
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Cr(m, )= Cov[u(m, n),u(0,0)] = Cov[u(m' +m,n’ +n), d(m “n)l  Y(m',n")

i.e.. the elements of the transformed sequence y (k) are orthogonal. If R represents
the covariance matrix rather lhan the autocorrelation matrix of x, then the sequence
y(k) is uncorrelated. The unitary matrix ®*7 is called the KL transform matrix. Irs
Fows are the conjugate eigenvectors ofR i.e., it is the conjugate transpose of the
eigenmatrix of R. The KL transform is of fundamental importance in digital signal
and image processing. Its applications and properties are considered in Chapter 5.

2.10 DISCRETE RANDOM FIELDS

In statistical representation of images, each pixel is considered as a random
variable. Thus we think of a given image as a sample function of an ensemble of
images. Such an ensemble would be adequately defined by a joint probability
density of the array of random variables. For practical image sizes, the number of
random variables is very large (262,144 for 512 x 512 images). Thus it is difficult to
specify a realistic joint density function because it would be an enormous task to
measure it. One possibility is to specify the ensemble by its first- and second-order
moments only (mean and covariances). Even with this simplifying constraint, the
task of determining realistic model parameters remains difficult. Various ap-
proaches for stochastic modeling are considered in Chapter 6. Here we consider
some basic definitions that will be useful in the subsequent chapters.

Definitions

When each sample of a two-dimensional sequence is a random variable, we call it a
discrete random field. When the random field represents an ensemble of images

(such as television i images or satellite images), we call it a random image. The term

random field will apply to any two-dimensicnal random sequence.
The mean and covariance functions of a complex random field are defined as

E[u(m, n)] = w(m, n) C(2.74)
Covlu(m, n),u(m’, n} & E{(u(m, n) — w(m, m)(@*(m’, n’) ~ p*(m’, n))]
=rlm,n;m’, n’)=r(m,n;m',n') (2.75)

Often, we will consider the stationary case where /. .f} i

P
w(m, n) = w = constant © - . .
rdm,nym',ny=r{m -~ m,n—n’)=r(m-—m’,n-—n’) (2.76)

As before, whenever there is no confusion, we will drop the subscript « from 7, . A
random field satistying (2.76) is also called shift invariant, translational (or spatial)
invariant, homogeneous, or.wide-sense stationary. Unless otherwise mentioned, -
stationarity will always be implied in the wide sense.

We will denote the covariance function of a stationary random field u (n, 1) by
r.{m, n) or r(m, n), implying that

@.77)

Sec.2.10 . Discrete Random Fislds - 35




A random field x (m, n) will be called a_white noise field whenever any two
different elements x (m, r) and x(m’, n’) are mutually uncorrelated, i.e., the field’s
covariance function is of the form :

nlm, nym', n’) = am, n)d(m —m',n —n’) (2.78)

_A random field is called Gaussian if its every segment defined on an arbitrary
finite grid is Gaussian. This means every finite segment of u(m, n) when mapped
into a vector will have a joint density of the form of (2.61).

Covariances and autocorrelations of two-dimensional fields have symmetry
and nonnegativity properties similar to those of one-dimensional random processes:

Symmetry:. r(m,n;m',n") =r*(m',n';m, n) 2.79)
In general ’ i ' .
r(m,n;m',n’)#r(m’,n;m,n’)#r*(m',n;r;z,n’) (2.80)

Nonnegativity: 2. 2 2 2 x(m, myr(m, nym’, n)x*(m’, n') =0,
T x(m,n)#0,¥(0m,n)  (2.81)

Separable and Isotropic image Covariance Functions

~The covariance function of a random field is called separable when it can be ex-
pressed as a product of covariance functions of one-dimensional sequences, i.e., if
r(m,n;m', n')=rm,mrn,n’) . (Nonstationary case) (2.82)

r(m, n)= r,(ni)rz(n) (Stationary case) (2.83)

A separable stationary covariance function often used in image processing is

rimn)=a?piphl,  Ipi[<1, o<1 (2.84)

Here o? represents the variance of the random fieid and p, =r(1,0)/0?,
p2=r(0,1)/a? are the one-step correlations in the m and n directions, respectively.
Another covariance function often considered as more realistic for many

images is the nonseparable exponential function
r(m, n) = o exp{~Vo,m*+ an?} (2.85)
When oy =a,=a, r(m,n) be'com‘es a function of the Euclidean distance d A
m?+ntie., L
r(m, n)=a?p¢ (2.86)

where p = exp(—|a|). Such a function is also called isotropic or.circularly symmetric.
Figure 2.6 shows a display of the separable and isotropic covariance functions. The

parameters of the nonseparable exponential covariance function are related to the

one-step correlations as «; = —Inp; , ap = —Inp, . Thus the covariance models (2.84)
and (2.85) can be identified by measuring the variance and the one-step correlations
of their zero mean random fields. In practice, these quantities are estimated from
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Figure 2.6 Two-dimensional covariance

functions () Isotropic covariance

i _ :
E +  and its log display; (b) separable covar-
i i @l iance and its log display.

the given image data by replacing the ensemble averages by sample averages; for
example, for an M X N image u(m, n), C

M N :
pz,;,:ﬁ]_v zzlglu(m, n (2.87)
rlm =i, = S E[u(m \n) = illulm +men +n) -] (288)

For many image classes, p; and p; are found to be around 0.95.

Example 2.10 (Covariance matrices of random fields)

In Example 2.9 we saw that the covariance matrix of a one-dimensional stationary
sequence is a symmetric Toeplitz matrix. Covariance matrices of étationary random
fields mapped into vectors by row or column ordering are block Toeplitz matrices. For
example, the covariance matrix of a segment of a stationary random field mapped into

a vector by column (or row) ordering is a doubly Toeplitz block matrix. If the covar-

iance function is separable, then this covariance block matrix is a Kronecker product of
two matrices. For details see Problem 2.17. .

Let u(n) be a stationary random sequence. Its covariance generating function (CGF)

is defined as the Z-transform of its covariance function 7,(n), i.e,,

ne= o

CGFlu(m}As,)8s(a 3 r(mz (2.89)
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— The spectral density function (SDF) is defined as the Fourier transform of 7,(n),

which is the CGF evaluated at'z = ,E?PSM ie.,

=

o ‘ SDp{u(n)}ésu(m)Q_S(w)= S rn) exp(—j@n)=§(z)],=,iw (2.90)

7.7~ The covariance r.{n) is simply the inverse Fourier transform of the SDF, i.e.,
oF T w o ]
rm) = i j' Su() exp(jon) do @.91)

: S

In two dimensions the CGF and SDF have the auaiogous definitions

° " CGFu(m, n)} =8z1,2)28(z1,2,) 4 Ez rdm, myzi" " (2.92)

MR 0 e sy

SDF{u(m, n)} = S (0;,w;) A Sw, ;) A 2302 r.(m, n) exp[~j(w,m + w,n)]

mn=-—%

. o= u(Z‘,‘.z)l‘l-elux z9= giw2 L (2.93)
rm,n)= jf Su(wy, @) exp[](wlm wzn)]dwldwz ! (2.94)

This shows

. o ,7/ { 1-; e
f;’i:Eﬂu(m, n) - p,l 1=rf0,0)= s ij_ Sy@1, @) dodw, 6 (2.95)

i.e., the volume under S, (01 L) s equal to the average power in the random field

u(m, n). Therefore, physically S.(w; , w; ) represents the power density in the image

“at spatial frequencies (w; , ;). Hence, the SDF is also known as the power spectrum
density function or simply the power spectrum of the underlying random field.
Often the power spectrum is defined as the Foutier transform of the autocorrelation

‘sequence rather than the covariance sequence. Unless stated otherwise, we will ..

contmue to use the definitions based on covariances.
In the text whenever we refer to S,(z;,2;) as the SDF, it is implied that
z; = exp(jo, ), z2 = exp(jw; ). When a spectral density function can be egpressed asa

ratio of finite polynomlals in z; and z, , it is called a rational spectrum and it is of the

form x L
> X bk )zrtzt
Sz, 2) =55 " @)
> 2 a(mn)zmzn :
m=—M n=~N
Such SDFs are realized by linear systems represented by finite-order difference
equations.
Properties of the SDF 7
1. The SDF is real: .

S(on,a) =8 (@0 D ery)
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. TABLE 2.8 Properties of SDF of Real Random Seguences

Property , One-Dimensional Two-Dimensional
Fourier transform pair S(wye r(n) S(wi, w2) e r(m, n)
Real S(w) =5 (@) S (wr, w3) = §* (w1, w2)
Even S{w)=S5(~w) S(w1, 02) = S (w1, —w2)
Nonnegative S(w)z0, Vo S(w1, 02) =0, VY, w;

Linear system output S.(0) = |H{w)]* S, (») Su(wi, @2) = |H (01, 02)* Se (01, w2)

Separability §(w1,02) = 51 (w01) 81 (w2)
if r(m, ) =ri(m)r.(n)

This follows by observing that the covariance function is conjugate symmetric,
i.e., r(m, n) = r*(—~m, —~n). For real random fields the SDF is also even.

2. The SDF is nonnegative, i.¢.,
S{w,0;) =0, Vo, w (2.98)

Intuitively, this must be true because power cannot be negative. The formal
proof can be obtained applying the nonnegativity property of (2.81) to the covar-
iance functions of stationary random fields.

For a space-invariant system whose frequency response’ is H(w,,w,) and

" whose input is a random field e(m, n), the SDF of the output u(m, n) is given by

S0, w5)= [H(gn s 02) Sewr, @;) (2.99)

Table 2.8 summarizes the properties of the one- and two-dimensional SDFs. Similar
definitions and properties hold for-the SDFs of continuous random fields.

Example 2.11

The covariance function of a statlonary white noise field is given as r(m, n)—'
o?3(m, n). The SDF is the constantcr because

S(w1,02)=0%2, 2 8(m, n) exp[~j(w,m + w,n)} =

m n

W Example 2.12
- Consider the separable covariance function defined in (2.84). Taking the Fourier trans-
form, the SDF is found to be the separable function
2] - Y1 — & )
o’( pi)( Pz) _ (2.100)
(1 + i = 2p1 cos w; )(1 + ps —2p, €08 w2 )

s (0)1 s 602)
< For the isotropic covariance function of (2.86), an analytic expression for the SDF is
not available. Figure 2.7 shows displays of some SDFs.
2.12 SOME RESULTS FROM ESTIVIATION THECRY

Here we state some important definitions and results from-estimation theory that
are useful in many image processing problems.
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Figm;e 2.7 Spectral density functions
aib

cid!| sDFof (a) isotropic covariance
function; (b) separable covariance func-
tion; (c) covariance function of the girl

. image; (d) covariance function of the-

i moon image (see Figure 1.3).

Mean Square Estimates

Let{y(n),1=n = N} be areal random sequence and x be any r'eal random variable.
It is desired to find £, called the gptimum mean square estimate of x, from an
observation of the random sequence y{(r) such that the mean square error

(o8 E[(e - 27)) o (2.101)
is minimized. It is simply the Cofféii/.ti_(;;l;l mean of x given y(n),1=<n s N9, 10]
T =BG AERD @y = [ en@®de  @102)

i iti ili i i he obsérvation vector
where p,,(£) is the conditional probability c.lensxty of x given t , to
y. Ifx gn[cyl y(n) are independent, then £ is simply the mean value of x. Note that £ is

an unbiased esti because

a) - PJE[#] =E[E(xly)] =E[jc_]j' . : (2.103)

For zero fean Gaussian raﬁdéﬂ;@iﬁriables, % turns out to be linearin y(n), i.e.,

o

1) : i= % a(n)y (n) oo (2.104)

n

where the cogfficients a(n) are determined by solving linear equations shown next..

The Orthogonality Principle -
According to this principle the minimum mean square estimation error vector is
orthogonal to every random variable functionally related tS the observations, 1.e.,
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forany g 1) 2 ¢ (y (D, y @), .., y(NY),
E{x -%z(]=0 . (2.105)

To prove this we write .
E[g(y)]=E[E(xly)g ()] = E[E (g (0)ly)] = E fxg(¥)] ==

which implies (2.105). Since # is a function of ¥, this also implies

E[(x ~ %] =0 i\) (2.106)
Bl - e =0 ./ 2.107)

i.e., the estimation error is orthogonal to every function of the estimate.

The orthogonality principle has been found to be very useful in linear estima-
tion. In general, the conditional mean is a nonlinear function and is difficult to
evaluate. Therefore, one often determines the optimum Jinear mean square esti-
mate. For zero mean random variables this is done by writing x as a linear function
of the observations, asin (2.104), and then finding the unknowns a{x) that minimize
the mean square error. This minimization gives

N ' '
Z aWE®yWI=Ely(m], n=1,...,N
=1 .
In matrix notation this yields ‘
a=R'r, (2.108)

where « = {a(n)}, r,, = {E[xy (n)]} are N x 1 vectors and R, is the N X N covariance
matrix of y. The minimized mean square error is given by

ot=0i-a'r, S (2.109)

If x, y(n) are nonzero mean random variables, then instead of (2.104), we
write :
N
X—py=%—p,= 21 a(m)[y (n) = py(n)] (2.110)

Once again « is given by (2.108), where R, andr,, represent the covariance and
cross-covariance arrays. If x, y (n) are non-Gaussian, then (2.104) and (2.109) still
give the best linear mean square estimate. However, this is not necessarily the
conditional mean.

2.13 SOME RESULTS FROM INFORMATION THEORY

‘Information theory gives some important concepts that are useful in digital repre-

sentation of images. Some of these concepts will be used in image quantization

(Chapter 4), image transforms (Chapter 5), and image data compression (Chap-
ter 11). )
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Information

Suppose there is a source (such as an'image), which generates a discrete set of
independent messages (such as gray levels) r,, with probabilities p,,k = 1,...,L.
Then the information associated with 7, is defined as

bits (.111)

Ik = -—iogz Pr
Since
— .
=1 (2.112)
k=1 ) .
each p,=1 and I, is nonnegative. This definition implies that the information
conveyed is large when an unlikely message is generated,

Entropy

The entropy of a source is defined as the average information generated by the
souree, i.e.,

L
Entropy, H = — 2, pi logyp,  bits/message . (2.113;
k=1

For a digital image considered as a source of independent pixels,-its.entropy.can be
‘estimated from its histogram. For a given L, the entropy of a source is maximum for

uniform distributions, i.e., py= /L, k =1,..., L. In that case

L
maxH =~ 3 + log~ =logy L bits 2.114)
i i1 L L

1 .
The entropy of a source gives the lower bound on the number of bits required.
to encode its output. In fact, according to Shannon’s noiseless coding theorem [11,
12], it is possible to code without distortion a source of entropy /4 bits u_sing an
" average of H -+« bits/message, where € >0 is an arbitrarily smali quantity. An
alternate form of this theorem staes that it is possible to code the source with H bits
such that the distortion in the decoded message could be made arbitrarily small.

== H{p)

S )

Figure 2.8 Entropy of a binary source.
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Example 2,13 _
Let the source be binary, i.e., L =2. Then,if p, = p, p.=1~p, G=p =1, the entropy
is (Fig. 2.8) :

H=H(p)=-plog.p —(1-p)logl - p)
The maximum entropy is 1 bit, which occurs when both the messages are equally likely.
Since the source is binary, it is always possible to code the output using 1 bit/message.
However, if p <3, p =4 (say), then H <0.2 bits, and Shannon’s noiseless coding
theorem says it is possible to fjnd a noiseless coding scheme that requires only 0.2 bits/
message.

The Rate Distortion Function

In analog-to-digital conversion of data, it is inevitable that the digitized data would

* have some error, however small, when compared to the analog sample. Rate dis-

tortion theory provides some useful results, which tell us the minimum number of
bits required to encode the data, while admitting a certain level of distortion and
vice versa. ‘

The rate distortion function of a random variable x gives the minimum average
rate Rp (in bits per sample) required to represent (or code) it while aljowing a fixed
distertion D in its reproduced value. If x is a Gaussian random variable of variance
o?andy isits reproduced value and if the distortion is measured by the mean square
value of the difference (x — y), i.e., :

' D =Elx =] (2.115)
then the rate distortion-‘function of x'is defined as [11, 12},
Ro= {(%) log, (64D), D =g?
? 0 y D> 0'2
1 0’2
= max[O, 6] 10g2<—13- )] (2.116)

Clearly the maximum value of D is equal to o2, the variance of x. Figure 2.9 shows
the nature of this function. — I

Now if {x(0),x(1),...,x(N ~1)} are Gaussian random variables encoded
independently and if {y(0),...,y(N — 1)} are their reproduced values, then the

average mean square distortion is :
N=t

D=+ Ell(t) -y
N =g

. (2.117)

_For a fixed average distortion D, the rate distortion function. Ry of the vector x is

given by "
R =—I-Nz—lm?x[0 ilo o] 2
D Pt Rk 82 GJ (2.118)
where 0 is determined by solving
1 zs‘/?: 1 ‘ .
D =< 2, min(8, o} .
N2 min6,01) (2119)
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Figure 2.9 Rate distortion function for

— Distortion, D a Gaussian source.

Alternatively, if Rp is fixed, then (2.119) gives the minimum attainable distortion,

where 9 is obtained by solving (2.118). In genml&ismxex-and-a-monotgnicglly

_nonincreasing function of the distortion D. fro Py
' : JZAENNTE ) FON
PROBLEMS r
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p (,IJ.
2.1 a. Given a sequence u(m, n)=(m +n)’. Evaluate u{m, n)s(m-—1, n - 2) and
u{mny®d(m~1,n—-2). s

b. Given a function f(x, y)= (x- +y)’. Evaluate f(x, y)8(x~1, y —2)-and o

fx, y)®8(x -1,y —2).
c. Show that - f =" 49 = 5 (n).
217 -

2.2 (Properties of Discrete Convolution) Prove the following:
a. h(m, n)®u(m, n)=u(m, n)®h(m, n) (Commutative)
b. A(m, n) ®[a,u: (m, n) + azux (m, n)}=ai[h(m, n) ® u, (m, n)]

+ ax[h{m, n) ®uy (m, n)] (Distributive)
~¢. him, n)®u(m —my, n — no=h(m —me, n —ne) ulm, n) (Shift invaria.nc'e)
d. h(m, n) ®[u, (m, n) ®u, (m, n)] =[h(m, n) ® u, (M, n)]® uz (m, n) (Associative)

e. h(m, n)®@d (m_, n) =h(m, n) (Reproductive)

f. sz v{(m, }n) =[ 2”2 h(m, n)J[ Exz uim, n)] (Volume consérvation)

m, n= —x m, n= —% m, n= -

where v(m, n) =h(m, n)®u(m, n)

2.3 Write and prove the properties of convolution analogous to those stated in Problem 2.2
for two-dimensional continuous systems.

2.4 1In each of the following systems find the impulse response and determine whether or

not the system is linear, shift inv@a\m, FIR, or IIK. e o
a. y(m m)=3x(m ) +9 [ Y/

b. y(m, n)=m*n*x(m, n) U
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e yimmy= 2 E x(m’', nt)

d. y(m, n) =;'(:n_in‘r;o—,%n - 1)
e. y(m, n) =exp{~ix(m, )|}
f.ymm= 2 2 x(m',n")

:
m'em - - - P

MG 2wmm’ 2%wnn’
b vim =SS e g2 i
m=0n =0 M N
2.5 a. Determine the convolution of x(m, 1) of Example 2.1 with each of the following
arrays, where the boxed element denotes the (0, 0) location. o
L0 -1 1 ii. i, —2 . )
4 [ 1[2]3 /
0 -1 0 -1 )

Verify your answers in each case via the volume conservation property discussed in
Problem 2.2, :
b. Show that in general the convolution of two arrays of sizes (M; X Ny) and (M, X N,)
yields an array of size (M, + M, — 1) X (N; + N, — 1).
2.6 Prove tne convolution theorem i.e., (2.17) and from that prove (2.19).
2.7 Prove the Fourier transform relations of Table 2.2 and find the Fourier transforms of
sin 2mxv: cos 2wy e and cos [27 (xm; + ym2)].
2.8. Prove the properties of the Fourier transform of two-dimensional sequences listed in

Table 2.4. i

(2.9) For the optical imaging system shown in Fig. P2.9, show that the output image is a
' scaled and inverted replica of the object.

1

2
I3

X y) o1 flax,by) glx, y) )
i S

Figure P2.9

: @ (Hankel transform) - Show that in polar coordinates the two-dimensional Fourier trans-
form becomes :

E(E $) 2 F( cosd, £ sind) =Lﬂffp(r, 0) exp[~j2nrE cos (0 — &b)]r dr do

‘where f, (r, 8) = f(r cos 8, r sin6). Hence, show that if f(x, y) is circularly symmétric,
. then its Fourier transform is also circularly symmetric and is given by -

o - 2%
E(p)=2n fo oy (Vo @urp) dr, To(x) A i fo exp (—jx cos 6) d6

The pair f, (r) and F, (p) is called the Hankel transform pair of zero order.
2.11 Prove the properties of the Z-transform listed in Table 2.5.
2.12 For each of the following linear systems, determine the transfer function, frequency

response, OTF, and the MTF.

a, y(m, n)—piy(m—1,n) = pay(m, n — 1) =x(m, n)

b y(m, 1) —p1y(m =1,n) = pay(m, n = 1)+ pipoy(m —1,n = 1) =x(m, ) *
2.13 What is the impulse response of each filter? )

a. Transfer function is H; (z1, z2) =1 — gy 27 =@z 25 ~ a3 27 25 = Gz

b. Frequency response is H(w:, wz) = 1 — 20 cos w; — 20 COS 2. .
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2.14 a. Write the convolution of two sequences {1,2,3,4} and {-1,2,

—1} as a Toeplitz

matrix operating on a 3 X 1 vector and then as a Toephtz matrix operating.on a 4 x 1

vector.
b. Write the convolution of two periodi¢ sequences {1,2,3,4, ..

and{-1,2,-1,0,...},

each of period 4, as a circulant matrix operating on a4 X 1 vector that represents the

. first sequence.
2.15 [Matrix trace and related formulas].

e

s

N -
a. Show that for square matrices A and B, Tr{A]=Tr[A"]= 2 A, Tr[A+B]=

. i=1
Tr[A]+Tr[B], and Tr[AB] = Tr[BA] when X, are the eigenvalues of A.

a

) ) A D é{'—
b. Define Da(Y)= ATr[Y]- da(m, n)

Tr{Y]}. Then show that D, (AB)=

DA(ABAT) = AB7 + AB, and D, (A™' BAC) = —(A™'BACA ™) + (CA™'B)".
2,16 Express the two-dimensional convolutions of Problems 2.5(a) as a doubly Toeplitz
block matrix operating on a 6 X 1 vecter obtained by column ordering of the x (in, n).

@In the two-dimensional linear system of (2.8), the x (m, n) and y (m, n) are of size M X N-
and are mapped into column ordered vectors x and y, respectively. Write this as a

- matrix equation

y =%

and show # is an N X N block matrix of basic dimension M X M that satisfies the

properties listed in Table P2.17.

TABLE P2.17 Impulse Response (and Covariance} Sequences

and Corresponding Block Matrix Structures

Sequence

Block matrix

h(m, n;m', n')

h(m —Am'r ﬂ;"')
h(m,n—n'ym'y
hm =, n = 0,0

Spatially varying
Spatially invariant in m;
Spatially invariant in n;
Spatially invariant in m, n;
Spatially invariant in m, n )
- and periodic in m h{m modulo M, n)
Spatially invariant in m, n
and periodic in n h(m, n modulo N)
Spatially invariant and
periodicinm, n
Separable, spatially varying

h{m modulo M, n modulo N)
hi(m, m'Yha(n, n')

Sepéréble, sbatial]y invariant Ay {(m —m'Yhy(n —n')

Separable, spatiz'llly invariant,

and periodic hy (m)h(n) (m modulo M,

n modulo N)

#, general
Toeplitz blocks.

" Block Toeplitz -

Doubly Toeplitz

Block Toeplitz with
circulant blocks

Block circulant with
Toeplitz blocks

Doubly block circulant

Kronecker product
H.®H,

Toeplitz Kronecker
product H; ® H,,
Hl, Hz TOCplitZ

Circulant Kronecker
product H, ® H,,
H;, H; circulant

2.18 Show each of the following.

8. A circulant matrix is Toeplitz, but the converse is not true.
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b. The product of two circulant (or blpck circulant) matrices is a circulant (or block

circulant) matrix.
¢. The product of two Teeplitz matrices need not be Toeplitz.

2.19 Show cach of the following.

a. The covariance matrix of a sequence of uncorrelated random variables is diagonal.

b. The cross-covariance matrix of two mutually wide-scnse stationary sequences is
Toeplitz.

¢. The covariance matrix of one period of a real stationary periodic random sequence is
circulant.

2.20 In Table P2.17, if h(m, n; m’, n') represents the covariance function of an M X N
segment of a random field x (mm, n), then show that the block matrix ¥ represents the
covariance matrix of column-ordered vector x for each of the cases listed in that table.

2.21 Prove properties (2.97) through (2.99) of SDFs. Show that (2.100) is the SDF of random
fields whose covariance function is the separable function given by (2.84).

2.22 a.*Compute the entropies of several digital images from their histograms and compare
them with the gray scale activity in the images. The gray scale activity may be
represented by the variance of the image.

b. Show that for a given number of possible messages the entropy of a source is

maximum if all the messages are equally likely.
¢. Show that R, given by (2.118) is a monotonically nonmcreasmg function of D.

,
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3.1 INTRCDUCTION

In presenting the output of an imaging system to a human observer, it is essential to
consider how it is transformed into information by the viewer. Understanding of the
visual perception process is important for developing measures of image fidelity,
which aid in the design and evaluation of image processing algorithms and imaging
systems. Visual image data itself represents spatial distribution of physical quan-
tities such as luminance and spatial frequencies of an object. The perceived infor- N
mation may be represented by attributes such as brightness, color, and edges. Our
primary goal here is to study how the perceptual information may be represented
quantitatively, S T T

3.2 LIGHT, LUMINANCE, BRIGHTNESS, AND CONTRASf

L SO DN

s

Light is the electromagnetic radiation that stimulates our visual response. It is

expressed as a spectral energy distribution L (M), where \ is the wavelength that lies

. - in the visible region, 350 nm to 780 nm, of the electromagnetic spectrum. Light
. received from an object can be written as

i o | [ 10)=pML(N) | . G.1)

where p(\) represents the reflectivity or transmissivity of the object and L (\) is the
.. 1ncident energy distribution. The illumination range over which the visual system

" can operate is roughly 1 to 10, or 10 orders of magnitude. '
( . +%. - The retina of the human eye (Fig. 3.1) contains two types of photoreceptors
‘ - 4. called rods and cones. The rods, about 100 million in number, are relatively long
2 . and thin. They provide Scotoplic vision, which is the visual response at the lower
' several orders of magnitude of illumination. The cones, many fewer in number

AN SR s
AN N
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_Figure 3.1 Cross section of the eye.

(about 6.5 million), are shorter and thicker and are less sensitive than the rods. They
provide photopic vision, the visual response at the higher 5 to 6 orders of magnitude
of illumination (for instance, in a well-lighted room or bright sunlight). In the
intermediate region of illumination, both rods and cones are active and provide

mesopic vision. We are primarily concerned with the photopic vision, since elec-

tronic image displays are well lighted.

The cones are also responsible for color vision. They are densely packed in the
center of the retina (calied fovea) at a density of about 120 cones per degree of arc
subtended in the field of vision. This corresponds to a spacing of about 0.5 min of
arc, or 2 um. The density of cones falls off rapidly outside a circle of 1° radius from
the fovea. The pupil of the eye acts as an aperture, In bright light it is about 2:mm in
diameter and acts as a low-pass filter (for green light) with a passband of about
60 cycles per degree.

The ‘cones are laterally connected by horizontal cells and have a forward

connection with bipolar cells. The bipolar cells are connected 10 ganglion cells,

which join to form the optic nerve that provides communication to the central

nervous systems.

The luminance or intensity of a spatially distributed object with light dxstnbu-
tion I(x, y, \) is defined as

flx )= f:I(x, ¥, NV(\)dX

where V() is called the relative luminous efficiency function of the visual system.
For the human eye, V(\) is a bell-shaped curve (Fig. 3.2) whose characteristics

4
1.0
0.8
0.6
0.4
0.2

0 - Lol S
380 460 540 620 700 780

Figure 3.2 Typical relative luminous ef-
ficiency function.

Chap; 3

50 : Image Perception

(3.2)

= i

oo g et o

depend on whether it is scotopic or photopic vision. The luminance of an object is
indevendent of the luminances of the surrounding oby.cts The brzghtness (also
‘call~d apparent brightness) of an dbject is the perceived luminance and depends on

'the luminance of the surround. Two objects with different surroundings could have

“identical luminances but different brightnesses. The following visual phenomena

exemplify the differences between luminance and brightness.
Simultanecus Contrast

InFig. 3.3a, the two smaller squares in the middle have equal luminance values, but
the one on the left appears brighter. On the other hand in Fig. 3.3b, the two squares
appear about equal in brighmess although their luminances are quite different. The
reason is that our perception is sensitive to luminance contrast rather than the
absolute luminance values themselves.

According to Weber’s law [2, 3], if the luminance ce fo) of an object is just
noticeably different from the luminance f, of its surround, then their ratio is

= constant
Writing fo = f, fi = f + Af where Af is small for just noticeably dlfferent luminances,
(3.3) can be written as
Af ‘
¥ =d(logf)=Ac (constant) (3.4
The value of the constant has been found to be 0.02, which means that at least
50 levels are needed for the contrast on a scale of 0 to 1. Equation (3.4) says

Figure 3.3 Simultaneous contrast: (a)

small squares in the middle have equal
| luminances but do not appear equally -
bright;

(b) small squares in the middle appear
almost equally bright, but their lumi-
nances are different.
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TABLE 3.1 Luminance to Contrast Models _ fViach Bands
1 Logarithmic law ¢ =30 logu f, 1=/ =100 ' The spatial interaction of luminances from an object and its surround creates a
2 Power law . Ce=af"™ n=23,.... . phenomenon called the Mach band effect. This effect shows that brightness isnota
: a:=10, a;=21.9 _ monotonic function of luminance. Consider the gray level bar chart of Fig. 3.5a,
s+ 100) . where each _bar has constant Iu’mi.ﬁ'ance. But the apparent brightness is not umfgxm
3 Background ratio C=TETF . aﬁiong the width of the bz}r. Transitions at gach. bar. appear brighter on the right side
£, = background luminance i and darker on the left side. The dashed line in Fig. 3.5b represents the perceived
hd : ; brightness. The overshoots and undershoots illustrate the Mach band effect. Mach
The luminance f lies in the interval [0, 100] except in the L ' bands are also visible in Fig. 3.6a, which exhibits a dark and a bright line (marked D
 logarithmic law. Contrast scale is over [0, 100]. I and B) near the transition regions of a smooth-intensity ramp. Measurement of the

equal increments in the log of the luminance should be perceived to be equally
different, i.e., A(logf) is proportional to Ac, the-change in contrast. Accordingly,-

the quantity .
c=a;+alogf (3.5)

where a, , a, are constants, is called the contrast. There are other _nlgdgLs of contrast
[see Table 3.1 and Fig. 3.4], one of which is the root law _

) ' c=fr " (3.6)
The choice of n = 3 has been prefcrfed over the logarithmic law in an image coding
study [7]. However, the logarithmic law remains the most widely used choice.

| e |
oo i : ;
; i
50 logyg £ ’,A}fl,_f),{/ pe o il L ;
s b A ! ‘(a) Gray-level bar chart. .
i ! . . : i
N~ [ ot 4 - : : ' f‘}
o 60 102 ‘ f . - - '
£ 219, ! : . : :
s w0 g i - Luminance ' . . x
| 3 G] . ) tNe =w = Brightness . \ ,
20 ; ' st ' |
i . [} 1 ; .
g T | ;
) { 1 { ] o ; ey e "y
"0 20 40 60 80 100 .
Luminance, ¥ . ’ TN H T Distance
“ . Figure 3.4 ~Contrast models. (b) Luminance vers{s brightness. Figure 3.5 Mach band ‘effe_ct. :
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(a} D = dark band, 8 = bright band.
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Figure 3.6 Mach bands.

s-Mach band effect can be used to estimate the impulse response of the visual system

(see Problem 3.5). .
Figure 3.6c shows the nature of this impulse response. The negative lobes
manifest a visual phenomenon known as lateral inhibition. The impulse response
values represent the relative spatial weighting (of the contrast) by the receptors,
rods and cones. The negative lobes indicate that the neural (postretinal) signal at a

given location has been inhibited by some of the laterally located récepﬁqgsz

~

3.3 MTF OF THE VISUAL SYSTEM

The Mach band effect measures the response of the visual system in spatial coor-.
dinates. The Fourier transform of the impulse response gives the frequency re-
sponse of the system from which its MTF can be determined. A direct measurement
of the MTF is possible by considering a sinusoidal grating of varying contrast (ratio
of the maximum to minimum intensity) and spatial frequency (Fig. 3.74). Obser-
vation of this figure (at a distance of about 1 m) shows the thresholds of visibility at
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Figure 3.7 MTF of the human visual system. (a) Contrast versus spatial frequency

sinusoidal grating; (b) typical MTF plot. .

various frequencies. The curve representing these thresholds is also the MTF, and it
varies with the viewer as well as the viewing angle. Its typical shape is of the form
shown in Fig. 3.7b. The curve actually observed from Fig. 3.7a is your own MTF
(distorted by the printing process). The shape of the curve is similar to a band-pass
filter and suggests that the human visual system is most sensitive to midfrequencies
and least sensitive to high frequencies. The frequency at which the peak occurs
varies with the viewer and generally lies between 3 and 10 cycle's/degree:jq  practice,
the contrast sensitivity also depends on the orientation .of the grating, being
fgaximum for horizontal and vertical gratings. However, the angular sensitivity
variations are within 3 dB (maximum deviation is at 45°) and, to a first approxi-
mation, the MTF can be considered to be isotropic and the phase effects can be
ignored. A curve fitting procedure [6] has yielded a formula for the frequency

" response of the visual system as

=100 [+ (8)] el 2],

p="VE]+ £] cycles/degree (3.7

where A, a, B, and p, are constants. For « =0 and B =1, pyis the frequency at
which the peak occurs. For example, in an image coding application [6], the values
A =26, a=0.0192, py= (0.114)‘;‘1 =8.772, and B = 1.1 have been found useful.
The peak frequency is 8 ¢ycles/degree and the peak value is normalized to unity.

‘ 3.4 THE VISIBILITY FUNCTION

et g s s

In many image processing systems—for instance, in image coding—the output
image ' (m, n) contains additive noise q(m, n), which depends on ¢(m, n), a func-
tion of the input image u(m, n) [see Fig. 3.8]. The sequence e(m, n) is sometimes
called the masking function. A masking function is an image feature that is fo be
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ulm, n} . +mu‘(m, n)

Figure 3.8 Visibility function noise
source model. The filter impulse response
} h(m, n) determines the masking func-
' tion. Noise source output depends on the
masking function amplitude |e|.

him, n)
elm,n)

observed or processed in the given application. For example, e(m, n)=u(m, n) in
CM transmission of images. Other examples are as follows:

{? 1. e(m,m)y=u(m,n)—u(m —1,n) _ ‘
Wz 2. e(mny=u(mn)—au(m—1,n)—aqu(mn—1) tau(m—-1,n-1)
3. e(m,n)=u(b1',n)—a[u(m—1,n)+.u(m+1,n) -
+u(m,n—1)+u(m, n+1)]

The yisibility function measures the subjective visibility in a _Scene containing
this masking function dependent noise g (s, n). It is measured as follows. For a
suitably small Ax and a fixed interval fx, x + Ax], add white noise of power P, to all
those pixels in the original image where masking furction magnitude le] lies in this
interval. Then obtain another image by adding white noise of power P, to all the
pixels such that the two images are subjectively equivalent based on a subjective

scale rating, such as the one shown in Table 3.3. Then the visibility function v(x) is

defined as [4]

v(x) = _—daxv—(x—‘) / (3.8
where

Vix)= % '

The visibility function therefore represents the subjective visibility in a scene of unit.
masking noise. This function varies with the scene. It is useful in defining a quantita-
‘tive criterion for subjective evaluation of errors in an image (see Section 3.6).

3.5 MONOCHROME VISION MODELS )
Based on the foregoing discussion, a simple overall model of monochrome vision

can be obtained [3, 6] as shown in Fig. 3.9. Light enters the eye, whose optical
_characteristics are represented by a low-pass filter with frequency response

- efficiency function V.(), vields the luminance distribution f(x, y)* via (3.2). The
nonlinear responsé of the rods and cones, represented by the point nonlinearity
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< H;(£,&). The spatial response of the eye, represented by the relative luminous
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(a)+ Overall monochrome vision model.
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(b) Simplified monochrome vision model.

Figure 3.9

&(*), yieldsthe contrast c(x, y). The lateral inhibition phenomenon is represented
by a spatially invariant, isotropic, linear system whose frequency response is
H(&;,&). Its output is the neural signal, which represents the apparent brightness
b(x, y). For an optically well-corrected eye, the low-pass filter has a much slower
drop-off with increasing frequency than that of the lateral inhibition mechanism.
Thus the optical effects of the eye could be ignored, and the simpler model showing
the transformation between the luminance and the brightness suffices.

Results from experiments using sinusoidal gratings indicate that spatial fre-
quency components, separated by about an octave, can be detected independently
by observers. Thus, it has been proposed [7] that the visual system contains a

" number of independent spatial channels, each tuned to a different spatial frequency
and orientation angle. This yields a refined model, which is useful in the analysis
and evaluation of image. processing systems that are far from the optimum and
introduce large levels of distortions. For near-optimum systems, where the output
image is only slightly degraded, the simplified model in Fig. 3.9 is d4dequate and is
the one with which we shall mostly be concerned. ' '

3.6 IMAGE FIDELITY CRITERIA

Image fidelity criteria are useful for measuring image quality and for rating the
performance of a processing technique or a vision system. There are two types of
Criteria that are used for ml@.ﬁnﬂjﬂimagequ@jt,uubjective,and_ggntitativeﬁ.
The subjective criteria use rating scales such as goodness scales and impairment
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Image Goodness Scales

TABLE 3.2

Gverall goodness scale Group goodness scale

Excellent (5 Best o .
Good 4) ‘Well above average (6)
Fair 3) Slightly above average - (5)
Poor 2) Average 4)
Unsatisfactory 1) Slightly below average 3
Well below average )
Worst (1)

The numbers in parenthesis indicate a numerical weight attached to the rating.

scales. A goodness scale may be a global scale or a group scale (Table 3.2). The
overall goodness criterion rates image quality on a scale ranging from excellent to
unsatisfactory. A training set of images is used to calibrate such a scale. The group
goodness scale is based on comparisons within a set of images.

The 1mpa1rment scale (Table 3.3) rates an image on the basis of the level of
degradation present in an image when compared with an idea! image. It is useful
in applications such as mage coding, where the encoding process introduces
degradations in the output image.

Sometimes a method called bubble sort is used in rating images. Two-images A
and B from a group are compared and their orderis determined (say it is A B). Then
the third image is compared with B and the order ABC or ACB i is established. If the

order is ACB, then A and C are compared and the new order is established. In this .
way, the best image bubbles to the top if no ties are allowed, Numerical ratmg may

be given after the images have been ranked.

If several observers are used in the evaluation process, then the mean rating is )

given by

where s, is the score associated with the &th rating, n, is the number of observers
with this rating, and » is the number of grades in the scale. .

TABLE 3.3 Impairment Scale
Not noticeable (1)
Just noticeable @
Definitely noticeable but only
slight impairment 3)
Impairment not objectionable (4) -
Somewhat objectionable (5)
Definitely objectionable (6)
Extremely objectionable @
58 ‘ . Image Perception ~ Chap. 3
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Among the quantitative measures,.a class of criteria used often is called the
mean square criterion. It refers to some sort of average or sum (or integral) of
squares of the error between two images. For M X N images u(m, n) and u'(m, ),
(or v(x, y) and v'(x, y) in the continuous case), the quantity

2 A 1

M N
2 ' —u'(m,n)? or v(x, y) —v'(x, Nfdxdy
0B 2, 2 o =) [ =vie
where R is the region over which the image is given, is called the average least
squares (or mtegral square) error. The quantity
ot & Ellu(m, m)—u'(m,m)P] or Ellv(xy) = v'(x )]

i . is called the mean square error, where E represents the mathematical expectation.
! - Often (3.9) is used as an estimate of (3.10) when ensembles for u(m, n) and
u’'(m, n) or v(x, y) and v'(x, y) are not available. Another quantity,

(3.9

(3.10)

E 1) —u'(m, n)f? .

wt=ghi 2 2 Elutnn) - wm )] |
or [[ ElbG) =G y)Plaray

called the average mean square or integral mean square error, is also used many

times. In many applications the (mean square) error is expressed in terms of a
signal-to-noise ratio (SNR), which is defined in decibels (dB) as .

(3.11)

"SNR =10 log@%, Ce= 0y, O » OF O (3.12)

where o? is the variance of the desired (or original) image.
Another definition of SNR, used commonly in image coding applications, is

o " (peak-to-peak valtie of the Teference image)

SNR’ = 10 10 210 (3.13)

. ) - o N

This definition generally results in a value of SNR' roughly 12 to 15 dB above
the value of SNR (see Problem 3.6).

The sequence u(m, ) (or the function v(x, y)) need not always represent
the image luminance function. For example, in the monochrome image model of
Fig. 3.9, v{x,y) 2 4 b(x, y) would represent the brlghtness function. Then from (3 9)
we may write for large images

0-2"=ff_wlb(xfy)—b_’(x»y)lzdxdy L

e —

(3.14)

=J-£° IB(§;,§2)*B'(&;,&z)lsz‘déz (3.15)

where B (£, &) is the Fourier transform of b (x, y) and (3.15) follows by virtue of the
Parseval theorem. From Fig. 3.9 we now obtain

(3.16)
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which is a frequency weighted mean square criterion applied to the contrast
function. ) :

An alternate visual criteria is to define the expectation operator E with respect
to the visibility (rather than the probability) function, for example, by

In

2 [ JePuie)de
i —00 B J

where ¢ & 1 — u' is the value of the error at any pixel and v(e) is its visibility. The
quantity %, then represents the mean square subjective error.

The mean square error criterion is not without limitations, especially when
used as a global measure of image fidelity. The prime justification for its common
use is the relative ease with which it can be handled mathematically for developing
image processing algorithms. When used as a Iocal measure, for instance, in adap-
tive techniques, it has proven to be much more effective.

(3.17)

3.7 COLOR REPRESENTATION

The study of color is important in the design and development of color vision
systems. Use of color in image displays is not only more pleasing, but it also enables
us to receive more visual information. While we can perceive only a few dozen gray
levels, we have the ability to distinguish between thousands of colors. The percep-
tual attributes of color are brighiness, hue, and saturation. Brightness represents
the perceived luminance as.mentioned before. The hue of a color refers to its
“redness,” “greenness,” and so on, For monochromatic light sources, differences in

‘.
A
-

White
i
t
]
Line of grays
wr
Pure (spectral)
Hue colors
S .
C/a |
Gl » R
Saturation :
8
I
. Brightness )
! Figure 3.10 Perceptual representation
‘ of the color space. The brightness W*
l varieﬁ along the vcrtica} axis, hue 0 varies -
: along the circumference, and saturation §
Bldek varies along the radius.
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Figure 3.11 -(a) Typical absorption spectra of the three types of cones in the
human retina; (b) three-receptor model for color representation.

hues are manifested by the differences in wavelengths. Saturation is that aspect of

_—perception that varies most strongly as more and more white light is added to a

monochromatic light. These definitions are somewhat imprecise because hue, satur-
.ation, and brightness all change when either the wavelength, the intensity, the hue,
% or the amount of white light in a color is changed. Figure 3.10 shows a perceptual
iy C‘ representation of the color space. Brightness (W*) varies along the vertical axis,
hue (6) varies along the circumference, and saturation (S) varies along the radial
distance.” For a fixed brightness W*, the symbols R, G, and B show the relative
locations of the red, green, and blue spectral colors.
Color representation is based on the classical theory of Thomas Young (1802)
[8], who stated that any color can be reproduced by mixing an appropriate set of
three primary colors. Subsequent findings, starting from those of Maxwell [9] to
“more recent ones reported in [10, 11], have established that there are three different
types of cones in the (normal) human retina with absorption spectra Sy(A),_S,(A),
ana S3(N), where Apio =N = Agae, Apin =380 nm, Ay = 780 .nm. These responses
peak in the yellow-green, green, and blue regions, respectively, of the visible
electromagnetic spectrum (Fig.” 3.11a), Note that there is significant overlap
“between Sy and ;. .
Based on the three-color theory, the spectral cnergy distribution of a
““colored” light, C(\), will produce a color sensation that can be described by

spectral responses (Fig. 3.11b) as
‘ Am;x N
a(©)=["smcMdn, =123
Amin © A e I S TN

(3.18)

"The superscript * used for brightness should not be confused with the complex conjugate. The notation
used here is to remain consistefit with the commonly used symbols for color coordinates.
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Equation (3.18) may be interpreted as an equation of color representation. If Ci(A)
and C,(\) are two spectral distributions that produce responses o;{C;} and «, {Cy).
such that '

a;(Cy) = o;(Cy), (3-19)

then the colors C; and C- are perceived to be identical. Hence two colors that look

i=1,2,3

" identical could have different spectral distributicns.

3.8 COLOR MATCHING AND REPRODUCTION

‘butions P(\}, &k
butions

One of the basic problems in the study of color is the recroduction of color using a
set of light sources. Generally, the number of scurces is restricted to three which,

due to the three-receptor model, is’ the minimum number required to maich .

arbitrary colors. Consider three primary sources of light with spectral energy distri-
=1,2,3. Let ~ |

f Pk{X)dx =1 (3.20)

where the limits of mt\,gratxon are assumed to b\. min 804 A,y and the sources are
linearly independent, i.¢.,a lincar combination of any two sources cannot p'od"ce
the third source. To match a color C(\), suppose the three primaries are mixed in

proportions of 8¢,k =1,2,3 (Fig. 3.12). Then S B B0 should be perceived as
C(n), e,

o (C) = f {2 B P (x)]s (A)dx—VBk [SVROYAN  i=1,2,3 - (3.2

Defining the ith cone response generated by one unit of the kth primary as

k=123 (3.22)

ardai(P) = [ SORM N,
we get

3

2 Bigi k=, (C) =f5[(>l)C(x)d>\, Ni=1,2,3 (3.23)
k=1
These are the color matching equations. Given an arbitrary color spectral distribu-
tion C(A), the primary sources P(\), and the spectral sensitivity curves S;(A), th2
quantities B,k = 1,2, 3, can be found by solving these equations. In practice, the
primary sources are calibrated against a reference white light source with known

@ )\@( SN g

@ Bs : Figure 3.12 Color matching using three
primary sources. .
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energy distribution’ W(\). Let w; denote the amount of kth primary required to
match the reference white. T Then th the quantities

W

Tk(C)”—k

’

k=1,2,3 (3.24)
are called the gistimuj«z;;ﬁglug; of the color C. Clearly, the tristimulus values of the
reference white are upity. The tristimuius values of a color give the relative amounts
of primaries required to match that color. The tristimulus values, 7;(\), of unit
energy spectral color at wavelength A give what are called the spectral matching
curves. These are obtained by setting C(X) = 8(\ — w, which together
with (3.24) yield three simultaneous equations -

3
2 Weiy T\ =8\,

i=1,2,3 (3.25)

3
for each \'. Given the spectral trlstxmulus values T;(A), the tristimulus values of an
arbitrary color C(\) can be calculated as (Problem 3.8)
*=1,2,3

7(C) = [ COTN dn, (3.26)

{ Example 3.1

The primary sources recommended by the CIE' as standard sources are ‘hree
monochromatic sources

P(2)=8(r—\y),
BN =3(x— \a),
. B\ =8(x — ),
Using (3.22), we obtain a; « = S: (As), i, k = 1,2, 3. The standard CIE white source has a
flat spectrum. Therefore, a{W) = jS:(\)d\. Using these two relations in (3.23) for-
reference white, we can write o ) 7 .
[ I e

B T R
E ,-()\,()=fS,-(}\)d)\, i=1,2,3

A\ =700 nm, red
‘Az =546.1 nm, green
A3 = 435.8 nm, blue

(3.27)

which can be soived for w, provided {5 {\«), 1 =/, k = 3} is a nonsingular matrix. Using
the spectral sensitivity curves and w,, one can solve (3.25) for the spectral tristimulus
values Ti(A) and obtain their plot as in Fig. 3.13. Note that some of the tristimulus
values are negative. This means that the source with negative tristimulus value, when
mixed with the given color, will matchan appropriate mixture of the other two sources.

It is safe to say that any one set of three primary sources cannot match all the visible
2glors; although for any given calor, a suitable set of three primary sources can
"be found. Hence, the primary sources for color reproductxon should be chosen_to
maximize the number of colors that can be matched..

Laws of Color Matching

"The preceding theory of Colorimetry leads to a useful set of color matching rules

{13], which are stated next.

'Commission Internationale de L’Eclairage, the international committee on color standards.

Sec. 3.8 Color Matching and Reproduction 83




Sl

0.4 =

TN

Tristimulus values

Wavelength, A{nm)

Figure 3.13  Spectral matching tristimulus curves for the CIE spectral primary
system. The negative tristimulus values indicate that the colors at those wavelengths
cannot be reproduced by the CIE primaries. , e A s
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1. Any color can be matched by mixing at most three colored lights! This means
we can always find three primary sources such that the matrix {g, ;} is non-
singular and (3.23) has a unique solution. :
2. The luminance of a color mixture is equal to the sum of the luminances of its

/ components. The luminance Y of a color light C(A) can be obtained via (3.2)

P

P

N

=0

“as (here the dependence on x, y is suppressed)
Y=7(0)= [ covnan (3.28)

From this formula, the luminance of the kth primary source with tristimulus

setting By = w; T (see Fig. 3.12) will be T, w, [ B(A\)V(\) d\. Hence the lumi-

nance of a color with tristimulus values T,k = 1,2, 3 can also be written as

3 3
Y=3 5[ mBoyvead 3 5 (3.29)
k=1 : k=1
where /; is called the luminosity coefficient of the ];th primary:
The reader should be cautioned that in gg:neral o ‘
. 3
CO)# 3 we T BN, (3.30)
k=1 .

even though a color match has been achieved.

3. The human eye cannot resolve the components of a color mixture. This means
- that a monochromatic light source and its color are not unique with respect to
each other, i.c., the eye cannot resolve the wavelengths from a color.

4. A color match at one luminance level holds over a wide range of luminances..

Chap. 3

Image Perception

5. Color addition: If a color Cy matches color C, and a color C; matches color C;,
then the mixture of C\ and C{ matches the mixture of C, and C}. Using the
notation ’

" [Ci]=[C:] Zcolor €, matches color G,
oy[C] + @,[C;] 2> a mixture containing an amount ey of C,
and an amount o, of C, :

we can write the preceding law as follows. If
[C]=[C]] and [C]=[C}]
then
CX][C[] + Otz[CZ} = oq[C{] + Olz[cﬁ]

6. Color subtraction: If a mixture of C, and C, matches a mixture of C{ and C; and
if C; matches C; then C, matches C} , i.e., if

[Cl+[Cl=[C]+[C)

and [G]=]C)]
then [c]=[ci]
7. Transitive law: If C,‘matchés G, and if C, marches Cs, then C, matches G,
ie.,if
[Cl=[C] and [G]=[Cj]
~then

2 [G]=[C]
8. Celor matches: Three types of color matches are defined:

T a ofCl= a[Cl] + [ C)] + o3[ Cy]; i.e., o units of C are matched by a mixture
of &; units of Cy, a; units of C;, and «; units of Cs. This is a direct match.
Indirect matches are defined by the following. -

b. OL[C] + (11[C1] = (12[C2] + 0!.3[C3]
C. (X[C]+ (XI[CI] + (Xz[Cz] = C!3[C3]

These are also called Grassman’s laws. They hold except when the luminance levels
are very high or very low. These are also useful in color reproduction colorimetry,
. the science of measuring color quantitatively. o

- Chromaticity Diagram
P

The chromaticities of a color are defined as/
! i

AL T a3

o Lt LH L) T :

Clearly 4, +t,+5,=1. Hence, only two of the three chromaticity coordinates'

are independent. Therefore, the chromaticity coordinates project the three-

dimensional color solid on a plane. The chromaticities 7, , 5, jointly represent the

Sec.3.8  Color Matching and Reproduction 65




510

Figure 3.14 Chromaticity diagram for the CIE spectral primary system. Shaded
area is the color gamut of this system.

chrominance components (i.e., hue and saturation) of the color. The entire color
space can be represented by the coordinates (¢ , £, Y), in which any Y = constant is
a chrominance plane. The chromaticity diagram represents the color subspace in
the chrominance plane. Figure 3.14 shows the chromaticity diagram for the CIE
spectral primary system. The chromaticity diagram has the following properties:

1. The locus of all the points representing spectral colors contains the region of
all the visible colors. ’ ,

2. The straight line joining the chromaticity coordinates of blue (360 nm) and red
(780 nm) contains the purple colors and is called the line of purples.

3. The region bounded by the straight lines joining the coordinates (0,0), (0,1)

and (1, 0) (the shaded region of Fig. 3.14) contains all the colors reproducible _

by the primary sources. This region is called the color garmut of the primary
‘sources. - ' ' ~ ,

4. The reference white of the CIE primary systern has chromaticity coordinates
@, 1). Colors lying close to this point are the less saturated colors. Colors
located far from this point are the more saturated colors, Thus the spectral
colors and the colors on the line of purples are maximally saturated.

3.9 COLOR COORDINATE SYSTEMS

There are several color coordinate systems (Table 3.4); which have come into
existence for a variety of reasons. : :

66 . . : Image Perception Chap. 3
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TABLE 3.4 Color Coordinate Systems
AR

g

Descripgion

Color coordinate system

Monochromatic primary sources P,.red =700 nm.
P,. green = 546.1 nm, Py, blue = 435.8 nm. Reference
white has flat spectrum and R = G =B = 1. See Figs.
3.13 and 3.14 for spectral matching curves and
chromaticity diagram.

1. C.L.E. spectral primary
system: R, G, B

e

* 9. C.LE. X, Y, Zsystem ryl [0.490 0310 0.200}[R
Y = laminance v |=l0177 0813 001G
71 lo.000 0.010 0.9901LB

3. C.LE. uniform - wi A 4x
chramaticity scale (UCS) TXTI5Y +3Z -~2x +12y +3
system: 1, v, ¥ .

&, v = chromaticities v Y o SO
TX+ Iy +3Z ~A 12y +3

Y =luminance —2X,V=Y,W=:K+;Y+Z

3
U, V, W = tristimulus
values corresponding to
u, v, w

U* = 13W* (1 — o)

* = 3WHY — )
W*=25(100Y)"* - 17. 1= 100Y = 100
¥y = luminance [0.01. 1] Mg o= chromaticities of reference white
W* = contrast or brightness

4. U*, V*, W system
(modified UCS system)

tmess
5. S8, W* system: S0+ (VT = 13l = )+ T
-+ § =saturation 6= tan"! (y_’) —tan [(v - vl — )], 0= g=2w

77 . 8=hue U*
/ W= brightness

6. NTSC receiver primary Linear transformation of X, Y, Z. Isbasedon
system Ry, Gn, Bn television phosphor primaries. Reference white is
iluminant C for which Ry = Gy=Bnx=1.

Rw 1.910 -0.533 —0.2881[X
{GN}= 085 2.000 —0.028]|Y
) Bw 0.058 -0.118 0.8961LZ

Y =0.299Rx+0.587G~ + 0.114Bw
] =0.596Ry — 0.274Gn — 0.322B~
Q =0.211Ry — 0.523Gy + 0.312B~ v

7. NTSC transmission system:
‘. Y =luminance
1, Q = chrominances

# Cw pk . ol
8. L*, a*, b* system: L* =25 (w)gz)l —'l6.1=100Y = 100
o .
L* = brightness o . [(i)m - (X) m]
’ a=50\x) "\w
a* = red-green content b* =200 [(Z)m B (;) .,,]
Yo Zy
b* = yellow-blue content Xo, Yo, Za= tristimulus values of the reference white
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As mentioned before, the CIE spectral primary sources do not yield a full .
gamut of reproducible colors. In fact, no practical set of three primarics has been
-found that can reproduce all cclors. This has led to the development of the CIE
X, Y, Z system with hypothetical primary sources such that all the spectral tri-
stimulus values are positive. Although the primary sources are physically unreal-
izable, this is a convenient coordinate system for colormetric calculations. In this
system Y represents the luminance of the color. The X, Y, Z coordinates are related
to the CIE R, G, B system via the linear transformation shown in Table 3.4, Figure
3.15 shows the chromaticity diagram for this system. The reference white for this
system has a flat spectrum as in the R, G, B system. The tristimulus values for the
reference whitcare X =Y =27 =1.

Figure 3.15 also contains several ellipses of different sizes and orientations.

These ellipses, also called MacAdam ellipses [10, 11], are such that colars that
lie inside are indistinguishable. Any color lying just outside the ellipse is just.
“noticeably different (JND) from the color at the center of the ellipse. The size,
orientation, and eccentricity (ratio of major to minor area) of these ellipses vary
throughout the color space. The uniform chromaticity scale (UCS) system u, v, Y
transforms these elliptical contours with large eccentricity (up to 20:1) to near
circles (eccentricity = 2 : 1) of almost equal size in the u, v plane. It is related to the
X, Y, Z system via the transformation shown in Table 3.4. Note that x; y and u, v are
the chromaticity coordinates and Y is the luminance. Figure 3.16 shows the
chromaticity diagram of the UCS coordinate system. The tristimulus coordinates
corresponding to u, v, and w 2 1= 4 —v are labeled as U, V; and W respectively.

The U* V*, W* system is a modified UCS system whose origin (i, ve) is.

“»shifted to the reference white in the u, v chromaticity plane. The coordinate W*

is a cube root transformation of the luminance and represents the contrast, (or ‘

the CIE XYZ color coordinate system.
The {MacAdam) ellipses are the just no-
ticeable color difference ellipses.
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Figure 3.16 Chromaticity diagram for
the CIE UCS color coordinate system.
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brightness) of a uniform color patch. This coordinate system is useful for measuring
color differences quantitatively. In this system, for unsaturated colors, i.e., for
colors lying near the grays in the color solid, the difference between two colors is, to
a good approximation, proportional to the length of the straight line joining them.

" The S, 6, W* system is simply the polar representation of the U*, V*, W*
system, where § and @ represent, respectively, the saturation and hue attributes of
color (Fig. 3.10). Large values of S imply highly saturated colors.

The National Television Systems Committee (NTSC) receiver primary system__
(Rw, Gw, By) was developed as a standard for television receivers. The NTSC has
adopted three phosphor primaries that glow in the red, green, and blue regions of
the visible spectrum. The reference white was chosen as the illuminant C, for which
the tristimulus values are Ry = Gy = By = 1. Table 3.5 gives the NTSC coordinates
of some of the major colors. The color solid for this coordinate system is a cube
(Fig. 3.17). The chromaticity diagram for this system is shown in Fig. 3.18. Note that
the reference white for NTSC is different from that for the CIE system.

The NTSC transmission system (Y, I, Q) was developed to facilitate trans-
‘mission of color images using the existing monochrome television channels without.
increasing the bandwidth requirement. The Y coordinate is the luminance (mono-
chrome channel) of the color. The other two tristimulus signals, I and Q, jointly
represent hue and saturation of the color and whose bandwidths are much smaller
than that of the luminance signal. The /, Q components are transmitted on a
subcarrier channel using quadrature modulation in such a way that the spatial

.~ TABLE 3.5 Tristimulus and Chromaticity Values of Major Colors in the NTSC
Receiver Primary System

Red Yellow  Green Cyan Blue . Magenta White  Black

- 1.0 1.0 0.0 . 0.0 0.0 1.0 1.0 0.0
(e 0.0 1.0 1.0 1.0 0.0 0.0 1.0 - 0.0

. By 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 .
™~ 1.0 0.5. 0.0 0.0 0.0 0.5 0.333 0.333
&~ 0.0 0.5 1.0 0.5 0.0 0.0 0.333 0.333
by 0.0 0.0 0.0 0.5 1.0 0.5 0.333 0.333
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Figure 3.17 - Tristimulus. color solid for the
NTSC receiver primary system.

Figure 3.18 Chromaticity  diagram for the
NTSC receiver primary system.

spectra of 7,  do not overiap with that of ¥ and the overall bandwidth required for

..., transmission remains unchanged (see Chapter 4). The Y, I, Q system is related to
, the Ry, Gy, By system via a linear transformation. This and some other trans-

formations relating the different coordinate systems are given in Table 3.6.
The L*, a%, b system gives a quantitative expression for the Munsell system .
of color classification [12]. Like the U*, V*, W* system, this also gives a useful color

“difference formula.

Example 3.2

We will find the representation of the NTSC receiver primary yellow in the various
coordinate systems. From Table 3.5, we have Ry = 1.0, Gy = 1.0, By =0.0. ‘
Using Table 3.6, we obtain the CIE spectral primary system coordinates
as R =1167-0.146-0.0=1.021, G =0.114+0.753+0.0=10.867, B = —0.001 +
0.59 + 0.0 = 0.058.
The corresponding chromaticity values are

r=m~(%—€as§=o.szs, | g=%§=0.445, _b=‘1)—:gi—2=,0.030
Similarly, for the other coordinate systems we obtain: A
X=0781, Y=0886, Z=0066; x=0451, y=0511, z=0.038 _
U=0521, V=0.886, /=0.972, w=0219, v=0373,- w=0.408
Y=0886, [=0322, Q=-0312 '

In the NTSC receiver primary system, the reference white is Ry= Gy =
By=1. This gives X, =0.982,Y,= 1.00, Z,=1.183. Note tha; X, Yy, and Z, are
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TABLE 3.6 ' Transformations from NTSC Receiver Primary to Different Coordinate
Systems. Input Vector is [Ry G Bx]'.

Cutput
vector Transformation matrix Comments
R 1.167 -0.146 -0.151
G . 0.114  0.753 . 0.159 CIE spectral primary system
B © \-0.001" 0.059 1.128 E
X7 0.607 0.174 0.201 :
Y 0.299 0.587 . 0.114 "CIE X, Y; Z system
Z 0.000 - 0.066 1.117
U 0.405 0.116  0.133 .
|4 0.299  0.587 0.114 CIE UCS tristimulus system
w 0.145 0.827 = 0.627
Y-l 0.299 - 0.587 0.114
I ‘ 0.596 -0.274 -0.322 NTSC transmission system
Q| -0.523  0.312

0.211

Pl

not u ity because the reference white for (INTSC kources is different from that of
the (Q@ Using the definitions of « and v from Table 3.4, we obtain u,=10.201,
vo = 0.307 for the reference white. : '

Using ‘the preceding results in the formulas for the remaining coordinate
systems, we obtain

W* =25(88.6)"” ~ 17 = 94.45,
S = 84.00,

U* =22.10,
6 = tan"(3.67) = 1.30 rad,

V* =81.04
W* =094.45

- 13 173
L* =25(88.6)" ~ 16 =95.45, g* = [(9'-7-8_1) - (98_8§) ] -
(88.6) a =500 (723 : 16.98

13
b = 200[(0.886)"3 - (Qﬁ’i”)

T Tes J=}15.67

3.10 COLOR DIFFERENCE MEASURES

" problem of considerable interest in coding,

Quantitative measures of color difference between any two arbitrary colors pose a
I enhancement, and analysis of color
images. Experimental evidence suggests that the tristimulus color solid may be
considered as a Riemannian space with a color distance metric [14, 15]

3 3
U (dsY =2 3 ¢ dXdX,

i=1j=1
The 'd.istance ds represents the infinitesimal difference between two colors with
coordinates X; and X; + dX;in the chosen color coordinate system. The coefficients

(3.32)
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¢; ;measure the average human perception sensitivity due to small differences in the
" ith and in the jth coordinates. R ‘
Small differences in color are described on observations of just noticeable
* differences tJNDS) in colors. A unit JND defined by .
' 33 ‘ .
1=2 X ¢,dX.dX; (3.33)
i=1j=1
is .the describing equation for an ellipsoid. If the coefficients ¢;; were cor}stapt
throughout the color space, then the JND ellipsoids would be of uniform size in
the color space. In that event, the color space could be reduced to a Euclidean
tristimulus space, where the color difference betvsiee.:n. any two colors would become
proportional to the length of the straight line joining them. Unff;)rtunately, the
c;; exhibit large variations with tristimulus values, so that the sizes as \.avell as
the orientations of the JIND ellipsoids vary considerably. Consequeqtly, the dlstfince
between two arbitrary colors C; and G, is given by the minimal .chstanc? chain of
ellipsoids lying along a curve 9* joining C; and C, such that the distance integral
(X))

d(C,, Cy) & 7( ds (3.34)

( ! 2) 4 Ci (X))
is minimum when evaluated along this curve, i.e., for 4= ‘Q* This curve is called
the geodesic between Cy and G, . If ¢;; are constant in the trisnmu%us space, then Fhe
geodesic is a straight line. Geodesics in color space can be dete;mmed by employing
a suitable optimization technique such as dynamic programming or the calculus of

4

o4 Yellow
Red
03
Magenta

0.2

O

Blue
o1

I 1 - [ 1 1 1 1 [ I3 |
4] 0.1 02 03 0.4 <0.5

Figure 3.19 Geodesics in the (4, v) plane.
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TABLE 3.7 CIE Color-Difference Formulas

: - Equation
Formula Number Comments
(88)2 = (AU*)? + (AV =) + (AW *Y? (3.35) 1964 CIE formula
(&s)> = (AL*) + (Au*) + (Av*)? (3.36) 1976 CIE formula, modification of
100Y\" - the i, v, Y space to u*, v*, L*
L*= 25(—1;—) ~16 space. uo, vy, Ysrefer to .
u* = 13L* (Ou’ ) reference white.
= - ug ;
v¥=13L* (v~ )
u'=uyu . .
N ) ¢
Vel = e sy Tz R
(As)* = (AL*)* + (Aa*)* + (Ab*)? (3.37) L*, a*, b* color coordinate

system.

variations ' [15]. Figure 3.19 shows the projections of several geodesic curves
between the major NTSC colors on the UCS u, v chromaticity plane. The geodesics
between the primary colors are nearly straight lines (in the chromaticity plane), but
the geodesics between most other colors are generally curved.

Due to the large complexity of the foregoing procedure of determining color
distance, simpler measures that can easily be used are desired. Several simple
formulas that approximate the Riemannian color space by a Euclidean eolor space
have been proposed by the CIE (Table 3.7). The first of these formulas [eq. (3.35)]
was adopted by the CIE in 1964. The formula of (3.36), called the CIE 1976
L*, u*, v* formula, is an improvement over the 1964 CIE U*, V*, W* formula in
regard to uniform spacing of colors that exhibit differences in sizes typical of those
in the Munsell book of color [12]. .

: The third formula, (3.37), is called the CIE 1976 L*, a*, b* color-difference
formula. It is intended to yield perceptually uniform spacing of colors that exhibit
color differences greater than JND threshold but smaller than those in the Munsell
book of color.

'3.11 COLOR VISION MODEL T

With color represented by a three-element vector, a color vision model containing
three channels [16}], each being similar to the simplified model of Fig. 3.9, is shown
in Fig. 3.20. The color image is represented by the Ry, Gy, By coordinates at
each pixel. The matrix A transforms the input into the three cone responses
o(x, y, C),k =1,2,3, where (x, ¥) are the spatial pixel coordinates and C refers to
its color. In Fig. 3.20, we have represented the normalized cone responses

. A ulx,y, C) _
Ti2——="rL,  k=1,2,3 3.38
£ vak(x’y: W) . ( )
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Figure 3.20 A color vision model.

In analogy with the definition of tristimulus values@?j&e called the retinal
Lone.tristimulus-coordinates (see Problem 3.14). The cone“réspornses undergo non-
linear point transformations to give three fields Ti(x, y), k = 1,2, 3. The 3 X 3 matrix
B transforms the {7;(x, y)} into {C,(x; y)} such.that C\(x, y) is the monochrome
{achromatic) contrast field c(x, y), asin Fig. 3.9, and Cy(x, y) and Cs(x, y) represent
the corresponding chromatic fields. The spatial filters Hy (¢, &), k = 1,2, 3, repre-
sent the frequency response of the visual system to luminance and chrominance
contrast signals. Thus H,(§; , &) is the same as H(§,, &) in Fig. 3.9 and is a band-
pass filter that represents the lateral inhibition phenomenon. The visual frequency
response to chrominance signals are not well established but are believed to have
their passbands in the lower frequency region, as shown in Fig. 3.21. The 3x 3
matrices A and B are given as follows:

0299 0.587 0.114
A= )

!
21.5 0.0 0.00

-41.0 410 0.00 (3.39)

~ 627 0.0 6.27

-0.127 0.724 0.175
0.000 0.066 117

From the model of Fig. 3.20, a criterion for color image fidelity can be.

defined. For example, for two color images {Ry, Gn, By} and {R}, G¥, B}}, their
subjective mean square error could be defined by

= %El f f@ (Bux, y) — Bi(x, y)dxdy (3.40)

where @ is the region over which the image is defined (or available), A is its area,
and {Bi{x, y)} and {B;(x, y)} are the outputs of the model for the two color images.

Hylo) - Hy3(p) Hyz (0}

Figure 3.21 Frequency responses of the
three color channels C, C;, C, of the
p  color vision model. Eachi ﬁlte&is assumed

01 - 03 10 30 100 300 10 be isotropic so that H. (p) 2 He(é1, &),
: Cycles/degree p=VE+&,k=1,2,3.

74 ’ : ‘ . Image Perception

Chap. 3 .

A s

'3.12 TEMPORAL PROPERTIES OF VISION

Temporal aspects of visual perception [1, 18] become important in the processing of

motion images and in the design of image displays for stationary images. The main
properties that will be relevant to our discussion are summarized here.

Bloch's Law

Light flashes of different durations but equal ener indistinguishable below a

critical duration. This critical duration is about 30 ms when the eye is adapted at

moderate illumination level. The more the eye is adapted to the dark, the longer is
the critical duratien. :

‘Critical Fusion Frequency (CFF)

When a slowly flashing light is observed, the individual flashes are distinguishable.
At flashing rates above the critical fusion frequency (CFF), the flashes are indistin-
guishable from a steady light of the same average intensity. This frequency gener-
ally does not exceed 50 to 60 Hz, Figure 3.22 shows a typical temporal MTF.
This property is the basis of television rasier scanning cameras agd displays.
Interlaced image fields are sampled and displayed at rates of 50 or 60 Hz. (The rate
is chosen to coincidg with the power-line frequency to avoid any interference.) For
digital display of still images, modern display monitors are refreshed at a rate of
60 frames/s to avoid any flicker perception. '

Spatial versus Temporal Effects

The eye is more sensitive to flickering of high spatial frequencies than low spatial

frequencies. Figure 3.22 compares the temporal MTFs for flickering fields with
different spatial frequencies. This fact has been found useful in coding of motion

A E
1.0
0.5 -
z
£ 02f
] '
s 8 0ifF — = . High spatial
8 frequencies field '
2 -
« 0.05 Low spatial
- frequencies field
0.02 i~
0.01 i i 1 L 1 1 ] :o-'
L 2 _5 0 20 50 Figure 3,22 Temporal MTFs for flicker-
Flicker frequency {Hz) ing fields.
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images by subsampling the moving areas everywhere except at t.he et_:lges. lj"or the
same reason, image display monitors offering high spatial resolution display images

at a noninterlaced 60-Hz refresh rate.

3.1

3.2
33

3.4

3.5

3.6
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PROBLEMS

Generate two 256 X 256 8-bit images as in Fig. 3.3a, where the small squares have gray
level values of 127 and the backgrounds have the values 63 and 223, Ve.nfy the result
of Fig. 3.3a. Next change the gray level of one of the small squares until the result of

Fig. 3.3b is verified.

Show that eqgs. (3.5) and (3.6) are solutions of a modified Weber law: dfif™ is pro-
portional to dc, i.e., equal changes in contrast are induced by equal amounts of df/f 7.

Find v.

Generate a digital bar chart as shown in Fig. 3.5a, where each bar is 64 pixels wide. '

Each image line is a staircase function, as shown in Fig. 3.5b. Plot the brightness

function (approximately) as you perceive it. .
Generate a 512 X 512 image, each row of which is a smooth ramp r(n')‘ as shown in
ideo monitor and locate the dark (D) and the bright (B) Mach

Fig. P3.4. Displayonav

bands.

rin}

240
225

136
120

Figure P3.4

The Mach band phenomenon predicts the one-dimensiorfal step response of th‘e visual
system, as shown by s(n) in Fig. P3.5. The corresponding one-dimensional impulse
response (or the vertical line response) is given by .h_(rf) fs(n) —s(n —1). Show that
h(n) has negative lobes (which manifest the lateral inhibition phenomenon) as shown

in Fig. 3.6¢.

As a rule of thumb, the peak-to-péabk value of images can be estimated as no, where n
varies between 4 to 6. Lettingn'= 5 and using (3.13), show that

" SNR’=SNR +144B
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Figure P3.5

"3.7; Can two monochromatic sources with different wavelengths be perceived to have the

" Za same color? Explain. :
@ Using eqs. (3.23) through (3.25), show that (3.26) is valid.

@ In this problen we show that any two tristimulus coordinate systems based on different
sets of primary sources are linearly related. Let {P(M)} and {P{(V}L Kk = 1,2, 3, be two
sets of primary sources with corresponding tristimulus coordinates {7;} and {T{} and
reference white sources W(\) and W'(A). If a color C(A) is matched by these sets of
sources, then show that .

3 3
2 i, kWi T/L(C)’- z al wi T(C) -
k=1 k=1

where the definitions of a’s and w’s follow from the text. Express this in matrix form

and write the solution for {7}}.

Show that given the chromaticities ¢, , 1z and the luminance Y, the tristimulus values of
a coordinate system can be obtained by

[

Y
L= k=1,2,3
2 Lt

i=1

where I; are the luminosity coefficients of the primary sources.
mﬁmx* For all the major NTSC colors listed in Table 3.5, calculate their tristimulus values

5

in the RGB, XYZ, UVW, YIQ, U*V*W, L*a*b*, S6W*, and T; T3 T; coordinate
systems. Calculate their chromaticity coordinates in the first three of these systems.

2 ,%,,;"_3. 12) Among the major NTSC colors, except for white and black (see Table 3.5), which one

(2) has the maximum luminance, (b)is most saturated, and (c) is least saturated?

"3.13* Calculate the color differences between ali pairs of the major NTSC colors listed in
Table 3.5 according to the 1964 CIE formula given in Table 3.7. Which pair of colors is
(a) maximally different, (b) minimally different? Repeat the calculations using the
L*a*b* system formula given by (3.37). .
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m Retinal cone system; Ti, 73, T3] Let. PX), k =1,2,3 denote the pnmary sources
Utkat generate the retinal cone tristimulus values. Using (3.38), (3.24) and (3.23), show

that this requires (for every x, y, C) .-
3

2 o,y C)aye=0ufx,y, C) > ayu=5( ~ k) (P3.14)

k=1
To determine Pi(\), write »
P(A)= 2 S{(\bix,  k=1,2,3
i=1i

and show that (P3.14) implies B 84,3 =3, where £ & {o; } and
=S50

Is the set {P.(\)} physically realizable? (Hint: Are b, , nonnegative?)
!
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~ Image Sampling
-and

4.1 INTRODUCTION

The most basic requirement for computer processing of imaggs is that the imgg@s. bg_,
available in digital form, that is, as arrays of _ﬂfnuilﬁngth_b.l.nar.)t-\m For digi-
tization (Fig. 4.1), the given image is sampled on a dxscre.:te} grxd {ﬂld each sample or
pixel is guantized usinig & finite number of bits. The digitized image can then be

processed by the computer. To display a digital image, it is first converted to an
analog signal, which is scanned onto a display.

Image Scanning

A common  of i sampling is to scan the image row by row and sample

each row. An example is the television camera »\fith a .vid‘icon ’camerz'a'tube. or an
“image dissector tube: Figure 4.2 shows the operating principle. An object, film, or
transparency is continuously illuminated to form an electrokn‘lmage on a phc?to-
sensitive plate called the target. In a vidicgn tube the target is photoconductive,

fix, v £ x, ¥} ] utm,n) Digizal v
—————p|  Sampler Quantizer computer .
input
image
Digitization
*(m, n) -
Digital 'l DioA Display
computer converter
Display o

Figure 4.1 ° Sampling, quantization, and display of imaggs,
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Figure 4.2 Scan-out method.
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%5
& 38 E
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-
s a0 o Switching S fix, y) v {m, n)
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.4_,,A 2 (% logic
a L]
A} e b e o @
-
o ﬁ

Figure 4.3 Self scanning array.

whereas in an image dissector tube it is photoemissive. A finite-aperture electron
beam scans the target and generates current which is proportional to the light
intensity falling on the target. A system with such scanning mechanism is called a
scan-out digitizer. Some of the modern scanning devices, such as charge-coupled
device (CCD) cameras, contain an array of photodetectors, a set of electronic
switches, and control circuitry all on a single chip. By external clocking, the array
can be scanned element by element in any desired manner.(see Fig. 4.3). This is
truly a two-dimensional sampling device and is sometimes called a self-scanning
-array. :

In another technique, called the scan-in method, the object is scanned by a
thin collimated light such as a laser beam, which illuminates only a small spot at
a time. The transmitted light is imaged by a lens onto a photodetector (Fig. 4.4).
Certain high-resolution flatbed scanners and rotating drum scanners use this tech-
nique for image digitization, display, or recording.

Television Standards °

In the United States a standard scanﬁing convention has been adopted by the
RETMA. Each complete scan of the target is called a frame, which contains 525

' Radio Electronics Television Manufacturers Association

Sec. 4.1 - Introduction : 81



Detector |-

ransparency Figure 4.4 Scan-in method. Technique

Laser source thin : _
used by some high-resolution scanners.

collimated light

Start of even field

Start
of odd = —
Pm— T End
— of even
field

End of odd field Figure 4.5 Interlaced scanning.

lines and is scanned at 4 rate of 30 frames per second. Each frame is composed of

two interlaced fields, each consisting of 262.5 lines, as shown in Fig. 4.5. To elimi-
nate flicker, alternate ficlds are sent at a rate of 60 fields per second. The scan lines
have a tilt because of the slower vertical scan rate. The first field contains all the odd
lines, and the second field contains the even lines. By keeping the field rate rather
. than the frame rate at 60 Hz, the bandwidth of the transmitted signal is reduced and
is found to be about 4.0 MHz. At the end of the first field, the cathode-ray tube
(CRT) beam retraces quickly upward to the top center of the target. The beam is
biased off during the horizental and vertical retrace periods so that its zigzag retrace
is not visible. In each vertical retrace 21 lines are lost, so there are only 484 active
lines per frame._ : :
' There are three color television standards, the NTSC, used in North America
and Japan; the Sequential Couleur a Mémoire (SECAM, or sequential chrominance
signal and memory), used in France, Eastern Europe, and the Soviet Union; and the
Phase Alternating Line (PAL), used in West Germany, The United Kingdom, parts
of Europe, South America, parts of Asia, and Africa.*
The NTSC system uses 525 scan lines per frame, 30 frames/s, and two inter-
laced fields per frame. The color video signal can be written as a composite signal

*Some television engineers have been known to refer to these standards as Never Twice Same Color
(NTSC), Something Essentially Contradictory to the American Method (SECAM), and Peace At Last

L P(PALY ’ .
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Ay

w(t) = Y(£) + I(D)cos@nfut + &) + O ()sin(2nfut + b) 4.1)

where ¢ = 33° and f,, is the subcarrier frequency. The quantities Y and (Z, Q) are
ths luminance and chrominance components, respectively, which can be obtained
by linearly transforming the R, G, and B signals (see Chapter 3). The half-power
bandwidths of Y, I, and Q are approximately 4.2 MHz, 1.3 MHz, and 0.5 MHz,
respectively. The color subcarrier frequency f,. is 3.58 MHz, which is 455 fir2, where
fiis the scan line frequency (i.e., 15.75 kHz for NTSC). Since f,. is an odd multiple of
fif2 as well as half the frame frequency, £,/2, the phase of the subcarrier will change
180° from line to line and from frame to frame. Taking this into account, the NTSC
composite video signal with 2: 1 line interlace can be represented as

P ule,y, 0)=Y(x,y, 1) +1(x,y, t)cosQuf,.x + b)cos[w(f,t — fiy)]
+ 0, y, )sin(2nfix + d)cosfn(f,t ~ fiy)]

" The SECAM system uses 625 lines at 25 frames/s with 2:1 line interlacing.
Each scan line is composed of the luminance signal Y{r) and one of the chro-
minance signals U 4 (B-Y)2.030rV a (R — Y)/1.14 alternating from line to
line. These chrominances are related to the NTSC coordinates as

I =V cos 33°— U sin 33°

' 0 = Vsin 33°+ [ cos 33°

(4.2)

(4.3)

This avoids the quadrature demodulation and the corresponding chrominance shifts

due to phase detection errors present in the NTSC receivers. The { and V sub-

carriers are at 4.25 and 4.41 MHz. SECAM also transmits a subcarrier for lumi-
_hance, which increases the complexity of mixers for transmission.

The PAL system also transmits 625 lines at 25 frames/s with 2: 1 line interlace.

The composite signal is sl :

[ u)=Y(@)+ Teos2mft + (1) sin 2nf.r

where m is the line number. Thus the phase of Vchanges By 180° between successive

lines in the same field. The cross talk between adjacent lines can be suppressed by

averaging them. The T, V are allowed the same bandwidths (1.3 MHz) with the
carrier located at 4.43 MHz.

p

~ Image Display and Recording

An image display/recording system is conceptually a scanning system operating in
the reverse direction. A common method is to scan the image samples, after digital
to analog (D to A) conversion, onto a CRT, which displays an array of closely
spaced smail light spots whose intensities are proportional to the sample mag-
nitudes. The image is viewed through a glass screen. The uality of the image
depends on the spot size, both its shape and spacing, Basically, the viewed image
should appear to be continuous. The required interpolation between the samples
can be provided in a number of ways. One way is to blur the writing spot electrically,
thereby creating an overlap between the spots. This requires control over the spot

shape. Even then, one is not close to the “optimal solution,”” which, as we shall see,
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requires a perfect low-pass filter. In some displays a very small spot size can be

achieved so that interpolation can be performed digitally to generate a larger array,
. which contains -estimates- of some of the missing samples in between the given

samples. This idea is used in bit-mapped computer graphics displays. ' .

The CRT display can bé used for recording the image on a fxlm _by s1rpply
imaging the spot through a lens onto the film (basically the same as imaging with a
camera with shutter open for at least one frame period). Other recorders, such as
microdensitometers, project a rectangular aperture of size equal to that of the

o image pixel so that the image field is completely filled.. . i

Another type of display/recorder is called a halftope display. Such a dlsp_lay
can write only black or white dots. By making the dot size much smaller than the
pixel size, white or black dots are dispersed pseudorandomly such that the average
“number of dots per pixel area is-equal to the pixel gray level. Due to spatial

integration performed by the eye, such a black and white display renders the

perception of a gray-level image. Newspapers, magazines, severat pri?ter/plotters,
graphic displays, and facsimile machines use the halftone method of display.
4.2 TWO-DIMENSIONAL SAMPLING THEORY

Bandlimited Images

The digitization pr(;cess for ‘images can be understood by modeling them as

bandlimited signals. Although real-world images are rarely banmmi@,,thcym‘

be approximated arbitrarily closely by bandlimited functions. -
' A function f(x, y) is called bandlimited if its'Fourier transform F (&, &) is zero

outside a bounded region in the frequency plane (Fig. 4.6); for in§tan§e,

Fg,8)=0, |a|>&0 [&[>& 4.4

FlE &)

(a) Fourier transform of a {b} Its region of support.

bandlimited function.

Figure 4.6
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The quantities £, and §, are called the x and y bandwidths of the image. If the
spectrum is circularly symmetric, then the single spatial frequency £ 2 £, = &0 is
called the bandwidth. oo

Sampling versus Replication

The sampling theory can be understood easily by remembering the fact that the
Fourier transform of an arbitrary sampled function is a scaled, periodic replication
of the Fourier transform of the original function. To see this, consider the ideal
image sampling function, which is a two-dimensional infinite array of Dirac delta
functions situated on a rectangular grid with spacing A x, Ay (Fig. 4.7a), that is,

comb(x, y;Ax, Ay)8 I3 8(x —mAx,y ~ ndy)y (4.5)

mn= —o )

The sampled image is defined as

fx, y) = f(x, y) comb(x, y;Ax,4y) .

= Zmz f(mAx, {1Ay)8(x —t;{i‘;/Ax, y —nAy)

m,n=—ox

(4.6)

The Fourier transform of a comb function with spacing Ax, Ay is another comb
function with spacing (1/A x, 1/Ay), namely, ’

COMB(&I’ EZ) = g{comb(x’ y 5 Ax: Ay)}

=§m§wk§2 (e~ kb= lE) ¢ (47)

=00

=& & comb(§, &; VA x, 1/Ay)

where £, 2 VAx, £, 8 Ay, Applying the multiplication property of Table 2.3 to
(4.6), the Fourier transform of the sampled image £,(x, y) is given by the convolution

E(&1, &) = F(£,£) @ COMB(&;, &)

“Eabe 22 FEL8)ONG ~kEn b= 1E)  (48)

by 20 (ke &~ 14)

L‘ From (4.8) the Fourier transform of the sampled image is, within a scale factor, a
periodi¢ replication of the Fourier transform of the input image on a grid whose .
spacing is (§ ., &) (Fig. 4.7b).

a _Reconstruction of the Image from Its Samples
From uniqueness of the Fourier tranform, we know that if the spectrum of the

original image could be recovered somehow from the spectrum of the sampled
image, then we would ha\)e the interpolated continuous image from the sampled
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£

(¢} Aliasing and foldover
freguencies {shaded areas}.

Figure 4.7 Two-dimensional sampling.
image. If the x, ¥ sampling frequencies are greater than twice the bandwidths,
that is, .
. éx: > 2g x0s g,\'s > 2§yo . (49)
or, equivalently, if the sampling intervals are smaller than one-half of the reqiprocai
of bandwidths, namely, ’ B .

ay <

- o1 o
: . . Ax <= (4:10) -
' ‘ 2&,(0’ 2&)‘0 ) ’
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then F(&, &) can be recovered by a low-pass filter with frequency response
: (£, 8B) ESA

otherwise

e e

1
CH(E&) = {(gngﬁ)’ "(4.11)
07

where&# is any region whose boundary 87 is contained within the annular ring
between the rectangles o2, and ¥, shown in Fig. 4.7b. This is seen by writing

Pl ) & HE, ). 8) = (5, &) (4.12)

that is, the original continuous image can be recovered exactly by low-pass filtering

the sampled image. | L Joa e
E ] / - i ) ,

Nyquist Rate, Alias/i//ﬁg, and Foldover Frequenciés'

The.lower bounds on the sampling rates, that is, 2£ x0, 26,0 I0 (4.9), are called the
Nyquist rates of the Nyquist frequencies. Their reciprocals are called the Nyquist
“mtervals. The sampling theory states that a bandlimited image sampled above its
x and y Nyquist rates can be recovered without error by low-pass filtering the
sampled image. However, if the sampling frequencies are below the Nyquist
frequencies, that is, if '

Exs < 2& 0y gys < 2&;0

then the periodic replications of F(g,, &) will overlap (Fig. 4.7¢c), resulting ina
distorted spectrum Ff(¢,, £, from which F(&, &) 1s irrevocably lost. The frequencies
above half the sampling frequencies, that is, above £.12, 802, are called the fold-
over frequencies. This overlapping of successive periods of the spectrum causes the
foldover frequencies in the original image to appear as frequencies below £ 12,812
in the sampled image. This phenomenon is called aliasing. é,Liasin%e;wx_s_cannm.bc
-__removed by subsequent, filtering. Aliasing can be avoided by low-pass filtering the
image first so that its bandwidth is less than one-half of the sampling frequency, that

. 2.7 s is,when (4.9) 18 satisfied.

Figures 4.8a and 4.8b show an image sampled above and below its Nyquist
- rate. Aliasing is visible near the high frequencies (about one-third distance from
g the center). Aliasing effects become invisible when the original image is low-pass '

RS - filtered befdre subsampling (Figs. 4.8c and 4.8d).

g If the region of support of the ideal low-pass filter in (4.11) 1s the rectangle
R = [—%gx:v %gxs] X [—%gys’%gy.v} ) (4-13)
. centeréd at the origin, then its impulse response is
e y) = sincxEJsine (Ve (414

Inverse Fourier transforming (4.12) and using (4:14) and (4.6), the reconstructed
_image is obtained as -« S - .

ooy = B3 fmxnay)sine(es— msinc(yb: = ny (419
’ NBD S . B
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Moreover, the reconstructed image is given by the interpolation formula .

f(x, y) - 2&)2 f(mAx, nAy) (Sin(xgx.r — m)ﬂ) (Sin(ygys - n)ﬁ) (4.16)

mon=—x (xgxs—m)'" (ygys_n)'n'

s Remarks g e

-

o n \*:\ i . » e
N \ ; 1. Equation (4.16) shows that infinite order interpolation is required to recon-
\\i\\ struct the continuous function f(x,y) from its samples f(mAx, nAy). In

AN

fih \\ : practice only finite-order interpolation is possible. However, sampling theory

] g\\\\\ NN reduces the uncountably infinite number of samples of f(x, y) over the area

) AN, ‘ AxAy to just one sample. This gives an infinite compression ratio per umit
TN Sl P £ P P

area.

i tructed b ; o . . . .
{a) Sampled above Nyquist rate and reconstructed by same ist rate and reconstructed by 2. The gliasing energy.is the energy in the foldover frequencies and is equal to the
ZOH; ’

. : . energy of the image in the tails of its spectrum outside the rectangle ¢2 defined
Wil

il | =

/ 4

/ i An image described by the function . i .

Ly / J— o g i
- . 1 = 5 14 o

¢ ,% (%, y) =2 cos 2m(3x +4y) J
el )

/i

i

\ ]
N1

is sampled such that Ax = Ay = 0.2. Clearly f(x, y) is bandlimited, sirice
F(8,8)=8(8i 3,6~ 4) +8(& +3,86+4)

is zero for [&|>3, [£2]>4. Hence £.0=3,50=4. Also £,, =&, = 1/0.2 =5, which is
less than the Nyquist frequencies 2¢ .o and 2£,0. The sampled image spectrum is
€. <
(n 3} F(t,8) =25 %2 (88— 3~ 5k, £ —4—50) +8(&: + 3= 5k, &+ 4~ 51)]

—co

s Let the low-pass filter have a rectangular region of support with cutoff frequencies at

i’ half the sampling frequencies, that is,

7L

\\X\\\\\\gxx

N

\ i H(&;,gzj _ {% -2.5 s.gl <25, -2.5=§=<25 K—:/g’[";
(c) lowpass filtered before subsampling and recon- {d) lowpass filtered before subsampling and recon- . T . 0, otherwise -
structed by ZOH; , structed by FOH. L . Applying (4.12), we obtain LD« Lo
Figure 4.8 Image sampling, aliasing, and reconstruction. x] e , . ' F ELE8) =38 —~2,6-1)+3(& + 2,6+1) »
: ' ~ which gives the reconstructed image as f(x, y) =2 cos 2m(2x + y). This shows that any
which is equal to f(x, y) if Ax, Ay satisfy (4.10). We can summarize the preceding ‘ %ﬁg?&z ;?zpacigzzé )u; Stzefriggsl; r::ryligoe mt;:; ei;taioglge (/%; _/2A gﬁy: /§2y)/gy_ (ﬁg,&iy) is
results by the following theorem. . ) o L x xS 24

Sampling Theorem : 4.3 EXTENSIONS OF SAMPLING THEORY
imited i isfying ‘ iformly on a rectangular - :

A bandlimited image f(x, y) satisfying (4.4) and sampled uni 1

gid with spacing Ax, Ay can be recovered without error from the sample values

f(mAx, nAy) provided the sampling rate is greater than the Nyquist rate, that Is,

There are several extensions of the two-dimensional sampling theory that are of -
interest in image processing. )
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Sampling Random Fields

In physical sampling environments, random noise is always present in thc_e image,so

it is important to consider sampling theory for random fields. A continuous sta-

tionary random field f(x, y) is called bandlimited if its power spectral density func-
“fion S(£;, &) is bandlimited, that is, if

SELE) =0 for|&| > £x,l&:|> &0 4.17)
Sampling Theorem for Random Fieids
If f(x, y) is a stationary bandlimited random field, then
Fomd sz F(mAx, ndy)sinc(xé, — m)sinc(y &, = n) (4.18).
mn= o :

converges to f(x, y) in the mean square sense, thgt is, »
o E(| (5, ) = fr, y)) =0 o @.19)
where g’-‘ =VA X g}’-‘ = I/AY) gxs > 2§x09 gy: > 2§y0 .

Remarks )

This theorem states that if the random field f(x, y) is sampled above its Nyquist rate,

then a continuous random field f(x, y) can be reconstructed from the sampled .
sequence such that f converges to f in the mean square sense. It can be shown t'hat

the power spectral density function S,(£1, &) of the sampled image fi(x,y) is a

periodic extension of S (&, &) and is given by

Ss(%ls EZ) = gxs'gy: k;_g S(gl - kén, gZ - lgy.f) . (4'20)

When the image is reconstructed by an ideal low-pass filter with gain 1/(£ &), the

reconstructed image power spectral density is given by

S’(gl, EZ) = <k2[=2_3,8(§1 - kgxn gi - lgys))W(gl ’ EZ)

@.21) .

= S(gly gl)

-

1y (gly §2) tE R : L (4‘22)
0, otherwise

where

The aliasing power o2 is the power in the tails of the power spectrum outside %2,
thatis,

=[] se.wdnde=[[ 1-WeESE DEE @2
Q.6 A o .

which is zero if f(x, y) is bandlimited with &0 = /2, =& /2. This analysis is also

% . : " Image Sampling and Quantization Chap. 4

S R e Ry

PSR

useful when a bandlimited image containing wideband noise is sampled. Then the
sigrial-to-noise ratio of the sampled image can deteriorate significantly unless it is
low-pass filtered before sampling (see Problem 4.6). -

Monrectangular Grid Sampling and Interiacin;_;

All of our previous discussion and most of the literature on two-dimensional
sampling is devoted to rectangular sampling lattices. This is the desirable form
of sampling grid if the spectrum F(§;, &) is limited over the rectangle <2 of (4.13).
Other sampling grids may be more efficient in terms of sampling density (that is,
samples/area) if the region of support of F(&,, &) is nonrectangular.

Consider, for example, the spectrum shown in Fig. 4.9, which can be tightly .
enclosed by a diamond-shaped region. On a rectangular sampling grid G;, the

vz /

& m’ m
: -1 0 1 2 -2 - 0 1 2

\( {——“//‘2\—\_"1: Ashez}.] ot e .A . . 1 .
<5 L NA

{a) Spectrum, {b} Rectangular grid G,. {c) Interlaced grid G,.

{d) Spectrum when ‘Sampled by G, {e} Spectrum of interlaced signal
{noninteriaced frames). when sampled by G,. Hatched
area shows the new inserts.

Figure 4.9 Interlaced sampling.
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Nyguist sampling intetvals would be Ax =Ay A A, =1.1f the sampling grid G, is
chosen, which is a 45° rotation of G, but with intersample distance of A,, the
spectrum of the sampled image will repeat on a grid similar to. G, (with spacing 1/A;)
(Fig. 4.9¢). Therefore, if &y = /2, there will be no aliasing, but the sampling density
has been reduced by half. Thus if an image does not contain the high frequencies in
both the dimensions simultaneously, then its sampling rate can be reduced by a
factor of 2. This theory is used in line interlacing television signals because the
human vision is insensitive to high spatial frequencies in areas of large motion (high
temporal frequencies). The interlaced television signal can be considered as a three-
dimensional signal f(x, y, ¢) sampled in vertical (y) and temporal (#) dimensions. If
& and & represent the temporal and vertical frequencies, respectively, then Fig.
4.9¢ represents the projection in (£, &) plane of the three-dimensional spectrum of
the interlaced television signal. ’

In digital television, all three coordinates x, ¥, and ¢t are sampled. The pre-

ceding interlacing concept can be extended to yield the line quincunx sampling

pattern [10]. Here each field uses an interlaced grid as in Fig. 4.9¢c, which reduces.

the sampling rate by another factor of two.

Hexagonal Sampling

For functions that are circularly symmetric and/or bandlimited over a’ circular
region, it can be shown that sampling on a hexagonal lattice requires 13.4 percent
fewer samples than rectangular sampling. Alternatively, for the same sampling rate
less aliasing is obtained on a hexagonal lattice than a rectangular lattice, Details are

available in [14].
Optimal Sampling

Equation (4.16) provides the interpretation that the sampling process transforms a
continuous function f(x,y) into a sequence f(mAx, nAy) from which the original
function can be recovered. Therefore, the coefficients of any convergent series
expansion of f(x, y) can be considered to give a generalized form of sampling. Such
sampling is not restrjcted  to bandlimited functions. For bandlimited functions the
sinc functions are optimal for ‘recovering the original function f{x, y) from the
samples f(mAx, nAy). For bandlimited random fields, the reconstructed random
field converges to the original in the mean square sense. )

More generally, there are functions that are optimal in the sense that they
sample a random image to give'a finite sequence such that the mean square error
between the original and the reconstructed images is minimized. In particular, a
series expansion of special interest is : . :

fxy)= Zaam‘n Drinl, ¥) (4.24)
" where {bma(x, y)} are the eigenfunctions of the autocorrelation function of the
random field f(x, y). This is called the Karhunen-Loéve (KL) series expansion of
the random field. This expansion is such that a,, , are orthogonal random variables,

92 : ) ' Image Sampling and Quantization , Chap.4
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~and, for a given number of terms, the mean square error in the reconstructed image
— 7 is minimum among all possible sampling functions. This property is useful in devel-
/ , oping data compression techniques for images. . ‘
The main difficulty in utilizing the preceding result for optimal sampling of
r&?practical (finite size) images is in generating the coefficients a.,,. In conventional
sampling (via the sinc functions), the coefficients a,,, are simply the values f(mAx,
nAy), which are easy to obtain. Nevertheless, the theory of KL expansion is useful
in determining bounds on performance and serves as an important guide in the
design of many image processing algorithms.

4.4 PRACTICAL LIMITATIONS IN SAMPLING
AND RECONSTRUCTION

The foregoing sampling theory is based on several idealizations. Real-world images
are not bandlimited, which means aliasing errors occur. These ‘can be reduced by
“low-pass filtering the input image prior to sampling but at the cost .of attenuating
. higher spatial frequencies. Such resolution loss, which results in blurring of the
. image, also occurs because practical scanners have finite apertures. Finally, the

pling theory. Its transfer function depends on the display aperture. Figure 4.10
represents the practical sampling/reconstruction systems.

4 Sampling Aperture

A practical sampling system gives an output g,(x, y), which-can be modeled as (see
Fig. 4.10) s

g0, ) A px, K F(x, y) =pd-x, =) Of(x, y)
=[] ptr—xy=preyyanay

&(x,y)=comb(x,y; Ax, Ay)g(x,y) - (4.26)

where p,(x,y) Qenotes the light distribution in the aperture and £ denotes its
shape. In practice the aperture is symmetric with respect to 180° rotation, that is, °
pi(x,y) =ps(—x, ~y). Equation (4.25) is the spatial correlation -of f(x,y) with

(4.25)

T T e e e — — bl
\ [ |
Input | I
image | " Scanning gix, y) | ideal g,(x, ¥) | Dispfay g
———e  aperture sampler : + spot St v}
: pel=x,=y) | Ax, Ay | Pgl=x, —y)
1 l
b e —— e -

Practical scanner mode!

Figure 4.10 Practical sampling and reconstruction. In the ideal case 1';,(x, y) =
Pa(x, ¥y =8(x,y). - | : ) ‘
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* % Figure 4.12 Comparison between zero- and

first-order hold interpolators. Zero-order

: hold gives higher resolution and first-order
hold gives greater smoothing.

pslx ,'y) and represents the process of scanning through the aperture. Equation ) N
{4.26) represents the sampled output. For example, for an L X L squarc aperture
- with uniform distribution, we will have

- gf

x+ L2

'y + L2 ’ : ‘
s =] 7 yydsay @ - -
y- )

x=LR

which is simply the integral of the image over the scanner aperture at position (x, y). ,
//\}n general (4.25) represents a low-pass filtering operation whose-transfer functionis ¢ .
determined by the aperture function p/(x,y). The overall effect on the recon- | CoE
structed image is a loss of resolution and a decrease in aliasing error (Fig. 4.11). This |
effect is also visible in the images of Fig. 4.12.

‘ ﬁ?_' Lrd Ty
U'\v‘»“':“)’ 2 At

Display Aperture/Interpolation Function

{a) 256 x 256 image interpolated to 512 x 512
by zero-order hold {ZOH). )

Perfect image reconstruction requires an infinite-order interpolation between the . Tk
samples f(m A x , nAy). For a display system this means its display spot should have a . .
Tight distribution given by the sinc function, which has infinite duration and negative e :
lobes. This makes it impossible for an incoherent imaging svstem to perform near
‘perfect interpolation.
Figure 4.13 lists several functions useful for interpolation. Two-dimensional
interpolation can be performed b successive interpolation along rows and columns k i ¢
p. -, of the image. The zero-order- and first-order-hold filters give piecewise constant . P
\ ‘and linear interpolations, respectively, between the samples. Higher-order holds ‘
H o can give quadratic (n =2) and cubic spline (n = 3) interpolations. With proper
coordinate scaling of the interpolating function, the nth-order hold converges to the
Gaussian function as n— . The display spot of a CRT is circular and can’ be
modeled by a Gaussian function whose variance controls its spread. Figure 4.14
shows the effect of a practical interpolator on the reconstructed image. The resolu-
_ “tion loss due to the reconstruction filter depends on the width of the main lobe.
: Since [sinc(x)}" < 1 for every x, the main lobe of the nth-order hold filter spectrum

FZ N

o

{b) 256 x 256 image interpolated to 612 x 512 i
by first-order hold (FOH). . g

f " . i
input image r Resolution :
spectrum loss A

Lowpass filtered

image spectrum

due to finite

aperture scanrning )

Aliased frequencies
without lowpass
filtering

(c) 256 x 256 images after interpolation

_E
2

(i) | (i)
i) | (iv) . {i}- 128 x 128 image zoomed by
ZOH; (ii) 64 x 64 image zoomed by ZOH; (iii)
128 x 128 image zoomed by FOH; {iv)
64 x 64 image zoomed by FOH.

sk 5 i S

Reduction in Aliasing with
aliasing power lowpass filtering
due to aperture due to aperture o

PP

Figure‘l.ll Effect of aperture scanning.
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Figure 4.13 Image interpolation functions; £,
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Figure 4.14 Effect of practical inter-
polation.

Interpolation error

will become narrower as n increases. Therefore, among the nth-order-hold intérpo-
lators of Figure 4.13, the zero-order-hold function will have minimum resolution loss
and maximum interpolation error. This effect is visible in Fig. 4.12, which contains
images interpolated by zero- and first-order-hold functions. In practice bilinear
interpolation (first-order hold) gives a reasonable trade-off between resotution loss
and smoothing accuracy.

Example 4.2

- A CCD camera contains a 256 X 256 array of 1dentxcal phorodetectors of size @ X awith
spacing Ax =Ay =g <A (see Fig. 4.3). The scanning electronics produces output
pulses proportional to the response of each detector. The spatial response of a detector
to a unit intensity impulse input at location (x,y) is p,(x,y) = p (x)p (y), where

2 2lx| a AP,
- . px)=14 < ~Ta ) bel= 2 S

0, otherwise

Suppose an image f(x, y} 47 cos 2w(x/4a + y/8a), with @ = A, is scanned. Using (4.25)
. . and taking the Fourier transform, we obtain
! 5

ol .G(§1,§2)=sinc(2§)sxnc< )F(g.,gz)

R —51"“62(8)51nef(m)F(§,, &) =0.94F (&, &)

where we have used F(&1, &) =5(k ~ 1da, & — 1/8a) + 8(& + 1/4a, gz+ 1/8a). The
scanner output signal can be written as

8(x.) =g (¥, Yw(x,y) I 8(x —mA, y —nA)

moa=—x
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2 w} ated energy (in the frequency domain) leaked into the side lobes of the sinc functions -

64
256a

1 Figure 4,15 Array. scanner frequency
128a response.

-

where w(x, y) is a rectangular window [—L/2, L/2], which limits the field of view of the
camera. With spacing A and L = 2564, the spectrum of the scanned image is

Gt &)= & 22 Gla-mb, & — n&), 6= 1a

where G (&, £) 2 G(&, £)OW(E, &), W(&, &) & Lisinc(& L)sinc(g; L). This gives
G (&, &) = 61,4400 sinc(256a§, — 64)sinc(256a€; — 32)
+ sinc(256ak, + 64)sinc(256a&, + 32)]

. Figure 4.15 shows 5(&, &) at £, = Vea, for £ > 0. Thus, instecad of obtaining a deita
function at £, = Vaq, a sinc function with main-lobe width of Vizsq is obtained. Thls
degradation of G (£, &) due to convolution with W(§&,, &) is called ripple. The assoCi-

due to this convolution is known as Ieakgg_g.

Lagrange Interpolation

The zero- and first-order holds also belong to a class of polynomial interpolation
functions called Lagrange polynomials. The Lagrange polynomial of order (g — 1)
is defined as

LA 1 (k m) ko<k<k, g=2,3
(e (4.28)
Li) 81, vk
where ko& —(q — 12, k; = (g — 1)/2 for g odd and k& —(g = 2)12, kB q/2 for |

q even. For a one-dimensional sampled sequence f(m A), with sampling interval 4,
the interpolated function between given samples is defined as

o

fay=Fma+ at) S L Ya)f(mA+kA) (4.29)
e ‘///0,
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where —3 =« <j for g odd and 0= a < 1 for g even. This formula uses g samples,

f(m + %ah), . .., f(m + k; A), to interpolate at any location (m + «)A between two

samples. For ¢ = 1, 2, 3, we get the formulas
g=1>f(ma+ad)=f(ms), -i=a<}

g =2>f(mA+ad)=(1~a)f(mA) + of (m + 1A); 0= <1; (first-order hold)
(4.30)

(zero-order hold)

q=3>f(ma+ aAj =1 -a)1+a)f(ma)
+wf(m +1A) - f(m

The Lagrange interpolation formula of (4.29) is useful because it converges to
the sinc function interpolation as g — [Problem 4.10}. In two dxmensmns the

‘Lagrange interpolation formula becomes
fx,y)=Ff(mAx +aAx,nby + BAy)

ko4

4y Z LY(a)Le(B) f(m + kAx, n +1Ay)

- kgl=

where g; and ¢, refer to the Lagrange polynomlal orders in the x and y directions,
respectxvely

a(l ) ~“1=a<i

14),

(4.31)

Moiré Effect and Fiat Field Response [4, 40]

Another phenomenbn that results from practical interpolation filters is called the

- Moiré effect. It appears in the form of beat patterns that arise if the image contains

perlodxcmes that are close to half the sampling frequencies. This effect occurs when
the display spot size is small (compared to sampling distance) so that the recon-
struction filter cutoff extends far beyond the ideal low-pass filter cutoff. Then a
signal at frequency £, < £,,/2 will interfere with a companion signal at £, — £, to
create a beat pattern, or the Moiré effect (see Problems 4.11 and 4.12). A special
case of this situation occurs when the input image is a uniform gray field. Then, if
the reconstruction filter does not have zero response at the sampling frequencies
(&5, £), scan lines will appear, and the displayed image will exhibit stripes and not
a flat field.

' 45 IMAGE QUANTIZATION

The step subsequent to sampling in image dlgltxzatlon is quantization. A quantizer
Wﬂﬂu&ﬂm@&@b@w
a finite set {r . r.} of numbers. This mapping is generally a staircase furiction
(Fig. 4.16) and the quantization rule is as follows: Define {#, k =1,...,L +1}asa
set of increasing transition or decision levels with ¢ and ¢, as the mmxmum and
maximum values, respectlvely, of u. If u lies in interval [, #.,), then it is mapped to

Ik, the kth reconstruction level.
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Image Quantization ' ' : 99




o
b Quantizer
’ output
ke = -
¢ u‘ T
e ——
/
/ / /
o S|
7 / / - 4 // / L ! u
’ 1
t, //t2 // // 7 ; /
/ / /
/
g 4 Quantizer
error
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Figure 4.16 A quantizer.

Example 4.3 '
The simplest and most common quantizer is the uniform quantizer. Let the output of

an image sensor take values between 0.0 to 10.0. If the samples are quantized uni-
formly to 256 levels, then the transition and reconstruction levels are

10(k — 1)
= e =1,..-, 257
fe==55g—> kK
I I k=1,..., 256
* 256

The interval g é te = teoi =rx — Iy is constant for different values of X and is called
the quantization interval.
kbt Aol il

In this chapter we will consider only gg_o_m_emamq.mmm which opgrate onson;s1
input sample at a time, and the output value depends only on that input. Suc

quantizess are useful in image coding techniques such as pulse code modulat.ion
(PCM), differential PCM, transform coding, and so on. Note that the guantizer

1 lue cannot .

mapping is irreversible; that is, for a given qugntizer output, thg input va '
Be determined uniquely. Hence, a quantizer introduces distortion, which any S:r
sonable design method must attempt to minimize. Tpere_a're se\éezal fqur'c:)r:i rlice.
designs available that offer various trade-offs between simplicity and perfor

These are discussed next.
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4.6 THE OPTIMUM MEAN SQUARE OR LLOYD-MAX QUANTIZER

This Juentizer minimizes the mean square error for a given number of quantization
Jevels. Let u be a real scalar random variable with a continuous probability density
function p,(« ). It is desired to find the decision levels #, and the reconstruction levels

r. for an L-level quantizer such that the mean square error_ PR - ‘
ct;ﬂ= E[(u —-u )2] = J’Lﬂ (//— 4 ')zp,‘((l) du T (432)
1

is minimized. Rewriting this as
L b+
&= f o = 1) pule) du (4.33)
i=17y

the necessary conditions for minimization of & are obtained by differentiating it
with respect to ¢, and r, and equating the results to zero. This gives

Ao e 038
T S = = e ut) ~ (= Pl = 0
e 2 ¢
3 (i o+
e 58_(_)_=2f" X(//—I'k)pu(//)d/(=l'), l=k=L
. : Lor I
Using the fact that #, <#,, simplification of the preceding equations gives
+ 7o
o= et i) 2“ ) (4.34)
U w1 R
f aple)yde
=% < =Eulue7] (4.33)

Th+1
) f p,,(/z) de

T

where .7 is the kth interval [z, , £,,,). These results state that the optimum transition
levels lie halfway between the optimum reconstruction levels, which, in turn, lie at
the center of mass of the probability density in between the transition levels.
Together, (4.34) and (4.35) are nonlinear equations that have to be solved simulta-
neously given the boundary values ¢, and 1., . In practice, these equations can be
solved by an iterative scheme such as the Newton method. .

When the number of guantization levels is large, an approximate solution can
_be obtained by modeling the probability density p,(«) as a piecewise constant
function as (see Fig. 4.17),

Pl)=pi),  EBYo+1h), = a<g (4.36)
Using this approximation in (4.33) and performing the required minimizations, an

approximate solution for the decision levels is obtained as

Zg T
Al T
By = ,:_lﬂ = th e
’ f [p,,(/l )]_IB de -
‘ I : .

N ) .
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P, (@)

Figure 4.17 Piecewise constant approxi-

@

mation of p.X(« ).

where A= tw”— f and z=(k/L)A, k =1,..., L. This method requires. that the
quantities f, and 7, ., , also called the over load points, be finite. These values, which
determine the dynamic range A of the Guantizer, have 10 be assumed prior to the
placement of the decision and reconstruction levels. Once the transition levels {1}
have been determmed the reconstruction levels {r,} can be determined easily by
averaging 4 and £+, . The quantizer mean square dlswmon is obtained as

. 12le { j{ )] de } (4.38)
b

This is a useful formula because it gives an estimate of quantizer error directly in

terms of the probability density and the number of quantlzanon levels. This result is
exact for piecewise constant probability densities.

Two commonly used densities for quantization of image- related data are the
‘Gaussian and the Laplacian densities, which are defined as follows.

Gaussian:

1
)= ez ool 5

Laplacian:

~

p{u) =% exp(—ale — ) C O (4.400)

where p and o ? denote the mean and variance, respectively, of u. The variance of
the Laplacian density is given by
2.2

or=2 (4.40b)

Tables 4.1 and 4.2 (on pp. 104-111) list the design values for several Lloyd-Max
quantizers for the preceding densities. For'more extensive tables see [30].
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Gt R A AN

il G ’*)2) (4.39)

The Uniform Optimal Quantizer

For uniform distributions, the Lloyd-Max quantizer equations become linear, giving
equal intervals between the transition levels and the reconstruction levels. This is
also called the linear quantizer. Let

l_t, h=a=tl 4
pu(”) = L+1 1
0, otherwise
From (4.35) we obtain
(t — fk) _hen + & (4.41)

hrk 2(tk+l - tk) 2
Combining (4.34) and (4.41) we get
_ bt
KT ' 0
which gives
fy— by = beys — o= constant 2 ¢

Finally, we obtain

tre1—1 , y
_h 1L L K=t +q, rkztk+% (4.42)

Thus all transition as well as reconstruction levels are equally spaced. The quantiza-
tion efror e & u — u is uniformly distributed over the interval (—g/2, q/2) Hence
the mean square error is given by

The variance o2 of a uniform random variable whose range is A is A%12. For a
uniform quantizer having B bits, we have g = A/25, This gives

f’

———=2‘2” > SNR 10 log,y2*2 =68 dB (4.44)

o

Thus the signal-to-noise ratio achieved by the optlmum mean square quarmzer for
uniform distributions is 6 dB per bit.

Propertles of the Optimum Mean Sguare Quantizer -

Thxs quantxzer has several mterestmg properties. ) ’;,\
& ras
¥
1. The quantzzer output is an unbiased estimate of the inpus, that is, /o
, ‘ Elw]=E[u) - /Q) (4.45)
2. The quantization error is orthogonal to the quantizer output, that is,
E[(u —uw)u]=0, (4.46) .
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