
Late GN Sapkal College Of Engineering Nasik.
Department Of Electronics & Telecommunications

Title: Java program using interface.

Aim: Create an applet with three text Fields and four buttons add, subtract, multiply and divide. User

will enter two values in the Text Fields. When any button is pressed, the corresponding operation is

performed and the result is displayed in the third Text Fields.

Objectives: To learn the use of interface in java.

Theory:

Applet
An applet is a special kind of Java program that is designed to be transmitted over the Internet and

automatically executed by a Java-compatible web browser. Furthermore, an applet is downloaded on

demand, without further interaction with the user. If the user clicks a link that contains an applet, the

applet will be automatically downloaded and run in the browser. Applets are intended to be small

programs. They are typically used to display data provided by the server, handle user input, or

provide simple functions, such as a loan calculator, that execute locally, rather than on the server. In

essence, the applet allows some functionality to be moved from the server to the client. The creation

of the applet changed Internet programming because it expanded the universe of objects that can

move about freely in cyberspace. In general, there are two very broad categories of objects that are

transmitted between the server and the client: passive information and dynamic, active programs. For

example, when you read your e-mail, you are viewing passive data. Even when you download a

program, the program’s code is still only passive data until you execute it. By contrast, the applet is a

dynamic, self-executing program. Such a program is an active agent on the client computer, yet it is

initiated by the server. As desirable as dynamic, networked programs are, they also present serious

problems in the areas of security and portability. Obviously, a program that downloads and executes

automatically on the client computer must be prevented from doing harm. It must also be able to run

in a variety of different environments and under different operating systems. As you will see, Java

solved these problems in an effective and elegant way. Let’s look a bit more closely at each.

Applet Fundamentals

Applets are small applications that are accessed on an Internet server, transported over the Internet,

automatically installed, and run as part of a web document. After an applet arrives on the client, it has

limited access to resources so that it can produce a graphical user interface and run complex

computations without introducing the risk of viruses or breaching data integrity.

However, the fundamentals connected to the creation of an applet are presented here, because applets

are not structured in the same way as the programs that have been used thus far. As you will see,

applets differ from console-based applications in several key areas.

Let’s begin with the simple applet shown here:

import java.awt.*;

import java.applet.*;

public class SimpleApplet extends Applet {

public void paint(Graphics g) {

g.drawString("A Simple Applet", 20, 20);

}

}

This applet begins with two import statements. The first imports the Abstract Window Toolkit

(AWT) classes. Applets interact with the user (either directly or indirectly) through the AWT, not

through the console-based I/O classes. The AWT contains support for a window-based, graphical

user interface. As you might expect, the AWT is quite large and sophisticated. Fortunately, this

simple applet makes very limited use of the AWT. (Applets can also use Swing to provide the

graphical user interface.)

Late GN Sapkal College Of Engineering Nasik.
Department Of Electronics & Telecommunications

The second import statement imports the applet package, which contains the class Applet. Every

applet that you create must be a subclass of Applet.

The next line in the program declares the class SimpleApplet. This class must be declared

as public, because it will be accessed by code that is outside the program. Inside SimpleApplet,

paint() is declared. This method is defined by the AWT and must be overridden by the applet.

paint() is called each time that the applet must redisplay its output. This situation can occur for

several reasons. For example, the window in which the applet is running can be overwritten by

another window and then uncovered. Or, the applet window can be minimized and then restored.

paint() is also called when the applet begins execution. Whatever the cause, whenever the applet

must redraw its output, paint() is called.

The paint() method has one parameter of type Graphics. This parameter contains the graphics

context, which describes the graphics environment in which the applet is running. This context

is used whenever output to the applet is required. Inside paint() is a call to drawString(), which is a

member of the Graphics class. This method outputs a string beginning at the specified X,Y location.

It has the following general form:

void drawString(String message, int x, int y)
Here, message is the string to be output beginning at x,y. In a Java window, the upper-left corner is

location 0,0. The call to drawString() in the applet causes the message “A Simple Applet” to be

displayed beginning at location 20,20.

Notice that the applet does not have a main() method. Unlike Java programs, applets do not begin

execution at main(). In fact, most applets don’t even have a main() method.

Instead, an applet begins execution when the name of its class is passed to an applet viewer

or to a network browser After you enter the source code for SimpleApplet, compile in the same way

that you have been compiling programs. However, running SimpleApplet involves a different

process.

In fact, there are two ways in which you can run an applet:

Executing the applet within a Java-compatible web browser.

Using an applet viewer, such as the standard tool, appletviewer.

An applet viewer executes your applet in a window. This is generally the fastest and easiest way to

test your applet.

Applets do not need a main() method.

Applets must be run under an applet viewer or a Java-compatible browser.

User I/O is not accomplished with Java’s stream I/O classes. Instead, applets use

the interface provided by the AWT or Swing.

The Applet Class
The Applet class is contained in the java.applet package. Applet contains several

methods that give you detailed control over the execution of your applet. In addition,

java.applet also defines three interfaces: AppletContext, AudioClip, and AppletStub.

Two Types of Applets

Late GN Sapkal College Of Engineering Nasik.
Department Of Electronics & Telecommunications

It is important to state at the outset that there are two varieties of applets. The first are those

based directly on the Applet class described in this chapter. These applets use the Abstract Window

Toolkit (AWT) to provide the graphic user interface (or use no GUI at all). This style of applet has

been available since Java was first created.

The second type of applets are those based on the Swing class JApplet. Swing applets use the Swing

classes to provide the GUI. Swing offers a richer and often easier-to-use user interface than does the

AWT. Thus, Swing-based applets are now the most popular. However, traditional AWT-based

applets are still used, especially when only a very simple user interface is required.

Thus, both AWT- and Swing-based applets are valid.

Because JApplet inherits Applet, all the features of Applet are also available in JApplet, and most

of the information in this chapter applies to both types of applets. Therefore, even if you are

interested in only Swing applets, the information in this chapter is still relevant and necessary.

void init() :- Called when an applet begins execution. It is the first method called for any applet.

void destroy() :- Called by the browser just before an applet is terminated. Your applet will override

this method if it needs to perform any cleanup prior to its destruction.

Applet Initialization and Termination
It is important to understand the order in which the various methods shown in the skeletonare called.

When an applet begins, the following methods are called, in this sequence:

1. init()

2. start()

3. paint()

When an applet is terminated, the following sequence of method calls takes place:

1. stop()

2. destroy()

init()
The init() method is the first method to be called. This is where you should initialize variables. This

method is called only once during the run time of your applet.

start()
The start() method is called after init(). It is also called to restart an applet after it has been stopped.

Whereas init() is called once—the first time an applet is loaded—start() is called

each time an applet’s HTML document is displayed onscreen. So, if a user leaves a web page

and comes back, the applet resumes execution at start().

paint()
The paint() method is called each time your applet’s output must be redrawn. This situation can

occur for several reasons. For example, the window in which the applet is running may be

overwritten by another window and then uncovered. Or the applet window may be minimized and

then restored. paint() is also called when the applet begins execution.

Whatever the cause, whenever the applet must redraw its output, paint() is called. The paint()

method has one parameter of type Graphics. This parameter will contain the graphics context, which

describes the graphics environment in which the applet is running. This context is used

whenever output to the applet is required.

stop()
The stop() method is called when a web browser leaves the HTML document containing the

applet—when it goes to another page, for example. When stop() is called, the applet is applet is not

visible. You can restart them when start() is called if the user returns to the page.

Late GN Sapkal College Of Engineering Nasik.
Department Of Electronics & Telecommunications

destroy()
The destroy() method is called when the environment determines that your applet needs to

be removed completely from memory. At this point, you should free up any resources the

applet may be using. The stop() method is always called before destroy().

Control Fundamentals
The AWT supports the following types of controls:

Labels

Push buttons

Check boxes

Choice lists

Lists

Scroll bars

Text editing

These controls are subclasses of Component.

Adding and Removing Controls
To include a control in a window, you must add it to the window. To do this, you must first

create an instance of the desired control and then add it to a window by calling add(), which

is defined by Container. The add() method has several forms.

Component add(Component compObj)

Here, compObj is an instance of the control that you want to add. A reference to compObj is

returned. Once a control has been added, it will automatically be visible whenever its parent

window is displayed.

Sometimes you will want to remove a control from a window when the control is no

longer needed. To do this, call remove(). This method is also defined by Container. It has

this general form:

void remove(Component obj)

Here, obj is a reference to the control you want to remove. You can remove all controls by

calling removeAll().

Labels
The easiest control to use is a label. A label is an object of type Label, and it contains a string, which

it displays. Labels are passive controls that do not support any interaction with the user. Label

defines the following constructors:

Label() throws HeadlessException

Label(String str) throws HeadlessException

Label(String str, int how) throws HeadlessException

The first version creates a blank label. The second version creates a label that contains the

string specified by str. This string is left-justified. The third version creates a label that

contains the string specified by str using the alignment specified by how. The value of how

must be one of these three constants: Label.LEFT, Label.RIGHT, or Label.CENTER.

You can set or change the text in a label by using the setText() method. You can obtain

the current label by calling getText(). These methods are shown here:

void setText(String str)

Late GN Sapkal College Of Engineering Nasik.
Department Of Electronics & Telecommunications

String getText()

For setText(), str specifies the new label. For getText(), the current label is returned.

You can set the alignment of the string within the label by calling setAlignment().

To obtain the current alignment, call getAlignment(). The methods are as follows:

void setAlignment(int how)

int getAlignment()

Buttons

Perhaps the most widely used control is the push button. A push button is a component that

contains a label and that generates an event when it is pressed. Push buttons are objects of

type Button. Button defines these two constructors:

Button() throws HeadlessException

Button(String str) throws HeadlessException

The first version creates an empty button. The second creates a button that contains str as a label.

After a button has been created, you can set its label by calling setLabel(). You can

retrieve its label by calling getLabel(). These methods are as follows:

void setLabel(String str)

String getLabel()

Here, str becomes the new label for the button.

Handling Buttons
Each time a button is pressed, an action event is generated. This is sent to any listeners that

previously registered an interest in receiving action event notifications from that component.

Each listener implements the ActionListener interface. That interface defines the

actionPerformed() method, which is called when an event occurs. An ActionEvent object

is supplied as the argument to this method. It contains both a reference to the button that

generated the event and a reference to the action command string associated with the button.

By default, the action command string is the label of the button. Usually, either the button

reference or the action command string can be used to identify the button. (You will soon

see examples of each approach.)

Here is an example that creates three buttons labeled “Yes”, “No”, and “Undecided”.

Each time one is pressed, a message is displayed that reports which button has been

pressed. In this version, the action command of the button (which, by default, is its label)

is used to determine which button has been pressed. The label is obtained by calling the

getActionCommand() method on the ActionEvent object passed to actionPerformed().

// Demonstrate Buttons

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ButtonDemo" width=250 height=150>

</applet>

*/

public class ButtonDemo extends Applet implements ActionListener {

String msg = "";

Button yes, no, maybe;

public void init() {

yes = new Button("Yes");

no = new Button("No");

maybe = new Button("Undecided");

Late GN Sapkal College Of Engineering Nasik.
Department Of Electronics & Telecommunications

add(yes);

add(no);

add(maybe);

yes.addActionListener(this);

no.addActionListener(this);

maybe.addActionListener(this);

}

public void actionPerformed(ActionEvent ae) {

String str = ae.getActionCommand();

if(str.equals("Yes")) {

msg = "You pressed Yes.";

}

else if(str.equals("No")) {

msg = "You pressed No.";

}

else {

msg = "You pressed Undecided.";

}

repaint();

}

public void paint(Graphics g) {

g.drawString(msg, 6, 100);

}

}

Sample output from the ButtonDemo program is shown in Figure 1.

Figure 1 :- Sample output from the ButtonDemo applet

Input:-
Enter the two numbers into the respected text fields.

Output:-
After pressing any button out of four, the desired result will be displayed in third text field.

Conclusion:-
Understand the concept of applet.

References:-
[1] Herbert Schildt, Java: The complete reference, Tata McGraw Hill, 7th Editon.

